Skip to main content

Advertisement

Log in

Anhedonia in Depression: Neurobiological and Genetic Aspects

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Anhedonia is a pathogenetically important clinical phenotype and a potential endophenotype for depressive symptoms with very high contributions from biological and genetic factors. The neurobiological mechanisms of anhedonia consist of impairments to the functioning of the brain “reward” system, which has been confirmed by a significant number of neuroimaging, genetic, and experimental studies. Anhedonia is transnosological in nature and is a complex phenomenon; its correct assessment in the context of one or another investigation paradigm is important. The optimum approach is to form a set of mutually supplementing investigation strategies assessing the most important facets of anhedonia, regardless of the relationship with the nosological form of the illness, in the framework of a single study using various methods to seek appropriate biomarkers for the severity of anhedonia (genetic, neuroimaging, biochemical). High-quality organization of studies of this type based on correct evidence-based medicine methodology should produce valuable systems of biomarkers in the near future, which when validated on independent cohorts will be useful for personalizing the diagnosis and treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Mazo, G. V. Rukavishnikov, and A. O. Kibitov, “Therapeutic resistance in depression from the point of view of genetics and pharmacogenetics,” Obozr. Psikhiatr. Med. Psikhol., No. 4, Part 1, 43–47 (2019), https://doi.org/10.31363/2313-7053-2019-4-1-43-47.

  2. M. Maes, B. Leonard, A. Fernandez, et al., “(Neuro)inflammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, No. 3, 659–663 (2011), https://doi.org/10.1016/j.pnpbp.2011.02.019.

    Article  CAS  PubMed  Google Scholar 

  3. P. F. Sullivan, M. C. Neale, and K. S. Kendler, “Genetic epidemiology of major depression: review and meta-analysis,” Am. J. Psychiatry, 157, No. 10, 1552–1562 (2000), https://doi.org/10.1176/appi.ajp.157.10.1552.

    Article  CAS  PubMed  Google Scholar 

  4. G. E. Mazo, N. G. Neznanov, and G. V. Rukavishnikov, “Psychiatric diagnosis: Up the down staircase,” Obozr. Psikhiatr. Med. Psikhol., 1, 15–24 (2015).

    Google Scholar 

  5. D. A. Pizzagalli, “Depression, stress, and anhedonia: toward a synthesis and integrated model,” Annu. Rev. Clin. Psychol., 10, 393–423 (2014), https://doi.org/10.1146/annurev-clinpsy-050212-185606.

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. T. Treadway, “The neurobiology of motivational deficits in depression – an update on candidate pathomechanisms,” Curr. Top. Behav. Neurosci., 27, 337–355 (2016), https://doi.org/10.1007/7854_2015_400.

    Article  PubMed  Google Scholar 

  7. S. H. Kennedy, “Core symptoms of major depressive disorder: relevance to diagnosis and treatment,” Dialogues Clin. Neurosci., 10, No. 3, 271–277 (2008), https://doi.org/10.31887/DCNS.2008.10.3/shkennedy.

  8. A. Liao, R. Walker, T. J. Carmody, et al., “Anxiety and anhedonia in depression: Associations with neuroticism and cognitive control,” J. Affect. Disord., 245, 1070–1078 (2019), https://doi.org/10.1016/j.jad.2018.11.072.

    Article  PubMed  Google Scholar 

  9. D. L. McMakin, T. M. Olino, G. Porta, et al., “Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression,” J. Am. Acad. Child Adolesc. Psychiatry, 51, No. 4, 404–411 (2012), https://doi.org/10.1016/j.jaac.2012.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. G. E. Mazo and A. O. Kibitov, Anhedonia as a basic syndrome and a target for treatment in depressive disorder,” Obozr. Psikhiatr. Med. Psikhol., 3, 10–18 (2019), https://doi.org/10.31363/2313-7053-2019-3-10-18.

  11. K. Gao, J. Sweet, M. Su, and J. R. Calabrese, “Depression severity and quality of life of qualified and unqualified patients with a mood disorder for a research study targeting anhedonia in a clinical sample,” Asian J. Psychiatr., 27, 40–47 (2017), https://doi.org/10.1016/j.ajp.2017.02.013.

    Article  PubMed  Google Scholar 

  12. F. Vinckier, D. Gourion, and S. Mouchabac, “Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners,” Eur. Psychiatry, 44, 1–8 (2017), https://doi.org/10.1016/j.eurpsy.2017.02.485.

    Article  CAS  PubMed  Google Scholar 

  13. G. D. Schrader, “Does anhedonia correlate with depression severity in chronic depression,” Compr. Psychiatry, 38, No. 5, 260–263 (1997), https://doi.org/10.1016/s0010-440x(97)90057-2.

    Article  CAS  PubMed  Google Scholar 

  14. F. M. Bos, F. J. Blaauw, E. Snippe, et al., “Exploring the emotional dynamics of subclinically depressed individuals with and without anhedonia: An experience sampling study,” J. Affect. Disord., 228, 186–193 (2018), https://doi.org/10.1016/j.jad.2017.12.017.

    Article  CAS  PubMed  Google Scholar 

  15. L. Pelizza and A. Ferrari, “Anhedonia in schizophrenia and major depression: state or trait,” Ann. Gen. Psychiatry, 8, 22 (2009), https://doi.org/10.1186/1744-859X-8-22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. P. O. Harvey, J. Pruessner, Y. Czechowska, and M. Lepage, “Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects,” Mol. Psychiatry, 12, No. 8, 767–775 (2007), https://doi.org/10.1038/sj.mp.4002021.

    Article  Google Scholar 

  17. E. Barkus and J. C. Badcock, “A transdiagnostic perspective on social anhedonia,” Front. Psychiatry, 10, 216 (2019), https://doi.org/10.3389/fpsyt.2019.00216.

    Article  PubMed  PubMed Central  Google Scholar 

  18. R. Coccurello, “Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing,” Behav. Brain Res., 372, 112041 (2019), https://doi.org/10.1016/j.bbr.2019.112041.

  19. M. L. Cléry-Melin, F. Jollant, and P. Gorwood, “Reward systems and cognitions in Major Depressive Disorder,” CNS Spectr., 24, No. 1, 64–77 (2019), https://doi.org/10.1017/S1092852918001335.

    Article  PubMed  Google Scholar 

  20. C. Lambert, S. Da Silva, A. K. Ceniti, et al., “Anhedonia in depression and schizophrenia: A transdiagnostic challenge,” CNS Neurosci. Ther., 24, No. 7, 615–623 (2018), https://doi.org/10.1111/cns.12854.

    Article  PubMed  PubMed Central  Google Scholar 

  21. P. Gorwood, “Neurobiological mechanisms of anhedonia,” Dial. Clin. Neurosci., 10, No. 3, 291–299 (2008), https://doi.org/10.31887/DCNS.2008.10.3/pgorwood.

  22. M. E. Fox and M. K. Lobo, “The molecular and cellular mechanisms of depression: a focus on reward circuitry,” Mol. Psychiatry, 24, No. 12, 1798–1815 (2019), https://doi.org/10.1038/s41380-019-0415-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. V. E. Heininga, E. Dejonckheere, M. Houben, et al., “The dynamical signature of anhedonia in major depressive disorder: positive emotion dynamics, reactivity, and recovery,” BMC Psychiatry, 19, No. 1, 59 (2019), https://doi.org/10.1186/s12888-018-1983-5.

  24. L. Yin, X. Xu, G. Chen, et al., “Inflammation and decreased functional connectivity in a widely-distributed network in depression: Centralized effects in the ventral medial prefrontal cortex,” Brain Behav. Immun., 80, 657–666 (2019), https://doi.org/10.1016/j.bbi.2019.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. B. Le Foll and L. French, “Transcriptomic characterization of the human habenula highlights drug metabolism and the neuroimmune system,” Front. Neurosci., 12, 742 (2018), https://doi.org/10.3389/fnins.2018.00742.

    Article  PubMed  PubMed Central  Google Scholar 

  26. D. J. Stein, “Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry,” CNS Spectr., 13, No. 7, 561–565 (2008), https://doi.org/10.1017/s1092852900016837.

    Article  PubMed  Google Scholar 

  27. S. J. Rizvi, C. Lambert, and S. Kennedy, “Presentation and neurobiology of anhedonia in mood disorders: commonalities and distinctions,” Curr. Psychiatry Rep., 20, No. 2, 13 (2018), https://doi.org/10.1007/s11920-018-0877-z.

  28. J. A. Cooper, A. R. Arulpragasam, and M. T. Treadway, “Anhedonia in depression: biological mechanisms and computational models,” Curr. Opin. Behav. Sci., 22, 128–135 (2018), https://doi.org/10.1016/j.cobeha.2018.01.024.

    Article  PubMed  PubMed Central  Google Scholar 

  29. G. S. Kranz, S. Kasper, and R. Lanzenberger, “Reward and the serotonergic system,” Neuroscience, 166, No. 4, 1023–1035 (2010), https://doi.org/10.1016/j.neuroscience.2010.01.036.

    Article  CAS  PubMed  Google Scholar 

  30. K. M. Tye, J. J. Mirzabekov, M. R. Warden, et al., “Dopamine neurons modulate neural encoding and expression of depression-related behavior,” Nature, 493, No. 7433, 537–541 (2013), https://doi.org/10.1038/nature11740.

    Article  CAS  PubMed  Google Scholar 

  31. C. Martin-Soelch, “Is depression associated with dysfunction of the central reward system,” Biochem. Soc. Trans., 37, Part 1, 313–317 (2009), https://doi.org/10.1042/BST0370313.

  32. P. Belujon and A. A. Grace, “Dopamine system dysregulation in major depressive disorders,” Int. J. Neuropsychopharmacol., 20, No. 12, 1036–1046 (2017), https://doi.org/10.1093/ijnp/pyx056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. Nusslock and L. B. Alloy, “Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective,” J. Affect. Disord., 216, 3–16 (2017), https://doi.org/10.1016/j.jad.2017.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. T. M. Olino, D. L. McMakin, and E. E. Forbes, “Toward an empirical multidimensional structure of anhedonia, reward sensitivity, and positive emotionality: an exploratory factor analytic study,” Assessment, 25, No. 6, 679–690 (2018), https://doi.org/10.1177/1073191116680291.

    Article  PubMed  Google Scholar 

  35. M. S. Gold, K. Blum, M. Febo, et al., “Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems,” Front. Biosci. (Schol. Ed.), 10, 309–325. https://doi.org/10.2741/s518 (2018).

    Article  Google Scholar 

  36. J. L. Moreau, “Simulating the anhedonia symptom of depression in animals,” Dialogues Clin. Neurosci., 4, No. 4, 351–360 (2002), https://doi.org/10.31887/DCNS.2002.4.4/jlmoreau.

  37. H. Anisman and K. Matheson, “Stress, depression, and anhedonia: caveats concerning animal models,” Neurosci. Biobehav. Rev., 29, No. 4–5, 525–546 (2005), https://doi.org/10.1016/j.neubiorev.2005.03.007.

    Article  PubMed  Google Scholar 

  38. M. Heshmati and S. J. Russo, “Anhedonia and the brain reward circuitry in depression,” Curr. Behav. Neurosci. Rep., 2, No. 3, 146–153 (2015), https://doi.org/10.1007/s40473-015-0044-3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. E. M. Anderson, D. Gomez, A. Caccamise, et al., “Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons,” Neurobiol. Stress, 10, 100152 (2019), https://doi.org/10.1016/j.ynstr.2019.100152.

  40. A. E. Nikolishin, A. G. Gofman, and A. O. Kibitov, “Alcohol dependence and depression: dopamine neuromediation as the clue to the study of comorbidity,” Narkologiya, 15, No. 8, 80–87 (2016).

    Google Scholar 

  41. G. Yadid and A. Friedman, “Dynamics of the dopaminergic system as a key component to the understanding of depression,” Prog. Brain Res., 172, 265–286 (2008), https://doi.org/10.1016/S0079-6123(08)00913-8.

    Article  CAS  PubMed  Google Scholar 

  42. M. G. Craske, A. E. Meuret, T. Ritz, et al., “Treatment for anhedonia: A neuroscience driven approach,” Depress. Anxiety, 33, No. 10, 927–938 (2016), https://doi.org/10.1002/da.22490.

    Article  PubMed  Google Scholar 

  43. G. R. Villas Boas, R. Boerngen de Lacerda, M. M. Paes, et al., “Molecular aspects of depression: A review from neurobiology to treatment,” Eur. J. Pharmacol., 851, 99–121 (2019), https://doi.org/10.1016/j.ejphar.2019.02.024.

    Article  CAS  PubMed  Google Scholar 

  44. J. A. Hamer, D. Testani, R. B. Mansur, et al., “Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression,” Exp. Neurol., 315, 1–8 (2019), https://doi.org/10.1016/j.expneurol.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  45. M. T. Treadway and D. H. Zald, “Parsing anhedonia: Translational models of reward-processing deficits in psychopathology,” Curr. Dir. Psychol. Sci., 22, No. 3, 244–249 (2013), https://doi.org/10.1177/0963721412474460.

    Article  PubMed  PubMed Central  Google Scholar 

  46. B. Cao, J. Zhu, H. Zuckerman, et al., “Pharmacological interventions targeting anhedonia in patients with major depressive disorder: A systematic review,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 92, 109–117 (2019), https://doi.org/10.1016/j.pnpbp.2019.01.002.

    Article  CAS  PubMed  Google Scholar 

  47. A. S. Heller, T. Johnstone, A. J. Shackman, et al., “Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation,” Proc. Natl. Acad. Sci. USA, 106, No. 52, 22445–22450 (2009), https://doi.org/10.1073/pnas.0910651106.

    Article  PubMed  PubMed Central  Google Scholar 

  48. M. T. Treadway and D. A. Pizzagalli, “Imaging the pathophysiology of major depressive disorder – from localist models to circuit-based analysis,” Biol. Mood Anxiety Disord., 4, No. 1, 5 (2014), https://doi.org/10.1186/2045-5380-4-5.

  49. C. B. Young, T. Chen, R. Nusslock, et al., “Anhedonia and general distress show dissociable ventromedial prefrontal cortex connectivity in major depressive disorder,” Transl. Psychiatry, 6, No. 5, e810 (2016), https://doi.org/10.1038/tp.2016.80.

  50. J. Keller, C. B. Young, E. Kelley, et al., “Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways,” J. Psychiatr. Res., 47, No. 10, 1319–1328 (2013), https://doi.org/10.1016/j.jpsychires.2013.05.015.

    Article  PubMed  Google Scholar 

  51. V. Enneking, P. Krüssel, D. Zaremba, et al., “Social anhedonia in major depressive disorder: a symptom-specific neuroimaging approach,” Neuropsychopharmacology, 44, No. 5, 883–889 (2019), https://doi.org/10.1038/s41386-018-0283-6.

    Article  PubMed  Google Scholar 

  52. J. Wacker, D. G. Dillon, and D. A. Pizzagalli, “The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting, EEG, fMRI, and volumetric techniques,” Neuroimage, 46, No. 1, 327–337 (2009), https://doi.org/10.1016/j.neuroimage.2009.01.058.

    Article  PubMed  Google Scholar 

  53. M. Walter, A. Henning, S. Grimm, et al., “The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression,” Arch. Gen. Psychiatry, 66, No. 5, 478–486 (2009), https://doi.org/10.1001/archgenpsychiatry.2009.39.

    Article  CAS  PubMed  Google Scholar 

  54. G. W. Mies, I. Van den Berg, I. H. Franken, et al., “Neurophysiological correlates of anhedonia in feedback processing,” Front. Hum. Neurosci., 7, 96 (2013), https://doi.org/10.3389/fnhum.2013.00096.

    Article  PubMed  PubMed Central  Google Scholar 

  55. N. S. Corral-Frías, Y. S. Nikolova, L. J. Michalski, et al., “Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology,” Psychol. Med., 45, No. 12, 2605–2617 (2015), https://doi.org/10.1017/S0033291715000525.

    Article  PubMed  PubMed Central  Google Scholar 

  56. X. H. Yang, K. Tian, D. F. Wang, et al., “Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder,” J. Affect. Disord., 218, 284–290 (2017), https://doi.org/10.1016/j.jad.2017.04.053.

    Article  PubMed  Google Scholar 

  57. M. S. Gaffrey, D. M. Barch, and R. Bogdan, “Amygdala reward reactivity mediates the association between preschool stress response and depression severity,” Biol. Psychiatry, 83, No. 2, 128–136 (2018), https://doi.org/10.1016/j.biopsych.2017.08.020.

    Article  PubMed  Google Scholar 

  58. R. P. Auerbach, A. Pisoni, E. Bondy, et al., “Neuroanatomical prediction of anhedonia in adolescents,” Neuropsychopharmacology, 42, No. 10, 2087–2095 (2017), https://doi.org/10.1038/npp.2017.28.

    Article  PubMed  PubMed Central  Google Scholar 

  59. A. Stringaris, P. Vidal-Ribas Belil, E. Artiges, et al., “The brain's response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample,” Am. J. Psychiatry, 172, No. 12, 1215–1223 (2015), https://doi.org/10.1176/appi.ajp.2015.14101298.

    Article  PubMed  Google Scholar 

  60. L. Gong, C. He, H. Zhang, et al., “Disrupted reward and cognitive control networks contribute to anhedonia in depression,” J. Psychiatr. Res., 103, 61–68 (2018), https://doi.org/10.1016/j.jpsychires.2018.05.010.

    Article  PubMed  Google Scholar 

  61. G. Loas, E. Dalleau, H. Lecointe, and V. Yon, “Relationships between anhedonia, alexithymia, impulsivity, suicidal ideation, recent suicide attempt, C-reactive protein and serum lipid levels among 122 inpatients with mood or anxious disorders,” Psychiatry Res., 246, 296–302 (2016), https://doi.org/10.1016/j.psychres.2016.09.056.

    Article  CAS  PubMed  Google Scholar 

  62. N. Eisenberger, E. T. Berkman, T. K. Inagaki, et al., “Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward,” Biol. Psychiatry, 68, No. 8, 748–754 (2010), https://doi.org/10.1016/j.biopsych.2010.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Z. Pan, J. D. Rosenblat, W. Swardfager, and R. S. McIntyre, “Role of proinflammatory cytokines in dopaminergic system disturbances, implications for anhedonic features of MDD,” Curr. Pharm. Des., 23, No. 14, 2065–2072 (2017), https://doi.org/10.2174/1381612823666170111144340.

    Article  CAS  PubMed  Google Scholar 

  64. A. Caviedes, C. Lafourcade, C. Soto, and U. Wyneken, “BDNF/NF-κB signaling in the neurobiology of depression,” Curr. Pharm. Des., 23, No. 21, 3154–3163 (2017), https://doi.org/10.2174/1381612823666170111141915.

    Article  CAS  PubMed  Google Scholar 

  65. J. Carter and W. Swardfager, “Mood and metabolism: Anhedonia as a clinical target in Type 2 diabetes,” Psychoneuroendocrinology, 69, 123–132 (2016), https://doi.org/10.1016/j.psyneuen.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  66. N. G. Neznanov, G. E. Mazo, G. V. Rukavishnikov, and A. O. Kibitov, “Depression as a predictor of somatic disorders: pathological prerequisites and genetic risks,” Usp. Fiziol. Nauk., 48, No. 4, 29–39 (2017).

    Google Scholar 

  67. Y. Lee, M. Subramaniapillai, E. Brietzke, et al., “Anti-cytokine agents for anhedonia: targeting inflammation and the immune system to treat dimensional disturbances in depression,” Ther. Adv. Psychopharmacol., 8, No. 12, 337–348 (2018), https://doi.org/10.1177/2045125318791944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. A. Labbe, A. Bureau, I. Moreau, et al., “Symptom dimensions as alternative phenotypes to address genetic heterogeneity in schizophrenia and bipolar disorder,” Eur. J. Hum. Genet., 20, No. 11, 1182–1188 (2012), https://doi.org/10.1038/ejhg.2012.67.

    Article  PubMed  PubMed Central  Google Scholar 

  69. D. Sieradzka, R. A. Power, D. Freeman, et al., “heritability of individual psychotic experiences captured by common genetic variants in a community sample of adolescents,” Behav. Genet., 45, No. 5, 493–502 (2015), https://doi.org/10.1007/s10519-015-9727-5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. R. Bogdan and D. A. Pizzagalli, “The heritability of hedonic capacity and perceived stress: a twin study evaluation of candidate depressive phenotypes,” Psychol. Med., 39, No. 2, 211–218 (2009), https://doi.org/10.1017/S0033291708003619.

    Article  CAS  PubMed  Google Scholar 

  71. D. A. Pizzagalli, A. L. Jahn, and J. P. O'Shea, “Toward an objective characterization of an anhedonic phenotype: a signal-detection approach,” Biol. Psychiatry, 57, No. 4, 319–327 (2005), https://doi.org/10.1016/j.biopsych.2004.11.026.

    Article  PubMed  PubMed Central  Google Scholar 

  72. L. J. Michalski, C. H. Demers, and D. A. Baranger, “Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation,” Genes Brain Behav., 16, No. 8, 781–789 (2017), https://doi.org/10.1111/gbb.12404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. P. A. Keedwell, R. Chapman, K. Christiansen, et al., “Cingulum white matter in young women at risk of depression: the effect of family history and anhedonia,” Biol. Psychiatry, 72, No. 4, 296–302 (2012), https://doi.org/10.1016/j.biopsych.2012.01.022.

    Article  PubMed  Google Scholar 

  74. M. Kovacs, L. M. Bylsma, I. Yaroslavsky, et al., “Positive affectivity is dampened in youths with histories of major depression and their never-depressed adolescent siblings,” Clin. Psychol. Sci., 4, No. 4, 661–674 (2016), https://doi.org/10.1177/2167702615607182.

    Article  PubMed  PubMed Central  Google Scholar 

  75. L. T. Trias, H. E. Ebeling, V. Penninkilampi-Kerola, et al., “How long do the consequences of parental preference last: A study of twins from pregnancy to young adulthood,” Twin Res. Hum. Gen., 9, No. 2, 240–249 (2006), https://doi.org/10.1375/183242706776382509.

    Article  Google Scholar 

  76. B. A. Makol and A. J. Polo, “parent-child endorsement discrepancies among youth at chronic-risk for depression,” J. Abnorm. Child Psychol., 46, No. 5, 1077–1088 (2018), https://doi.org/10.1007/s10802-017-0360-z.

    Article  PubMed  Google Scholar 

  77. O. Pain, F. Dudbridge, A. G. Cardno, et al., “Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders,” Am J. Med. Genet. B Neuropsychiatr. Genet., 177, No. 4, 416–425 (2018), https://doi.org/10.1002/ajmg.b.32630.

  78. H. Ren, C. Fabbri, R. Uher, et al., “Genes associated with anhedonia: a new analysis in a large clinical trial (GENDEP),” Transl. Psychiatry, 8, No. 1, 150 (2018), https://doi.org/10.1038/s41398-018-0198-3.

  79. D. M. Howard, M. J. Adams, T. K. Clarke, et al., “Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions,” Nat. Neurosci., 22, No. 3, 343–352 (2019), https://doi.org/10.1038/s41593-018-0326-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. R. Bogdan, Y. S. Nikolova, and D. A. Pizzagalli, “Neurogenetics of depression: a focus on reward processing and stress sensitivity,” Neurobiol. Dis., 52, 12–23 (2013), https://doi.org/10.1016/j.nbd.2012.05.007.

    Article  PubMed  Google Scholar 

  81. L. Keltikangas-Järvinen and J. Salo, “Dopamine and serotonin systems modify environmental effects on human behavior: a review,” Scand. J. Psychol., 50, No. 6, 574–582 (2009), https://doi.org/10.1111/j.1467-9450.2009.00785.x.

    Article  PubMed  Google Scholar 

  82. M. Mansari, B. P. Guiard, O. Chernoloz, et al., “Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder,” CNS Neurosci. Ther., 16, No. 3, e1–17 (2010), https://doi.org/10.1111/j.1755-5949.2010.00146.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. M. Peciña, M. Sikora, E. T. Avery, et al., “Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response,” Eur Neuropsychopharmacol., 27, No. 10, 977–986 (2017), https://doi.org/10.1016/j.euroneuro.2017.08.427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. N. Light, L. A. Bieliauskas, and J. K. Zubieta, “'Top-down' mu-opioid system function in humans: mu-opioid receptors in ventrolateral prefrontal cortex mediate the relationship between hedonic tone and executive function in major depressive disorder,” J. Neuropsychiatry Clin. Neurosci., 29, No. 4, 357–364 (2017), https://doi.org/10.1176/appi.neuropsych.16090171.

    Article  PubMed  Google Scholar 

  85. L. Lalanne, G. Ayranci, B. L. Kieffer, and P. E. Lutz, “The kappa opioid receptor: from addiction to depression, and back,” Front. Psychiatry, 5, 170 (2014), https://doi.org/10.3389/fpsyt.2014.00170.

    Article  PubMed  PubMed Central  Google Scholar 

  86. R. Bogdan, A. Agrawal, M. S. Gaffrey, et al., “Serotonin transporter-linked polymorphic region (5-HTTLPR) genotype and stressful life events interact to predict preschool-onset depression: a replication and developmental extension,” J. Child Psychol. Psychiatry, 55, No. 5, 448–457 (2014), https://doi.org/10.1111/jcpp.12142.

    Article  PubMed  Google Scholar 

  87. S. Wüst, I. S. Federenko, E. F. van Rossum, et al., “A psychobiological perspective on genetic determinants of hypothalamus-pituitary-adrenal axis activity,” Ann. N. Y. Acad. Sci., 1032, 52–62 (2004), https://doi.org/10.1196/annals.1314.005.

    Article  CAS  PubMed  Google Scholar 

  88. S. Wüst, E. F. Van Rossum, I. S. Federenko, et al., “Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress,” J. Clin. Endocrinol. Metab., 89, No. 2, 565–573 (2004), https://doi.org/10.1210/jc.2003-031148.

    Article  CAS  PubMed  Google Scholar 

  89. I. S. Federenko, M. Nagamine, D. H. Hellhammer, et al., “The heritability of hypothalamus pituitary adrenal axis responses to psychosocial stress is context dependent,” J. Clin. Endocrinol. Metab., 89, No. 12, 6244–6250 (2004), https://doi.org/10.1210/jc.2004-0981.

    Article  CAS  PubMed  Google Scholar 

  90. C. R. DiIorio, C. E. Carey, L. J. Michalski, et al., “Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function,” Psychoneuroendocrinology, 80, 170–178 (2017), https://doi.org/10.1016/j.psyneuen.2017.03.016.

    Article  CAS  Google Scholar 

  91. A. Ching-López, J. Cervilla, M. Rivera, et al., “Epidemiological support for genetic variability at hypothalamic-pituitary-adrenal axis and serotonergic system as risk factors for major depression,” Neuropsychiatr. Dis. Treat., 11, 2743–2754 (2015), https://doi.org/10.2147/NDT.S90369.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Y. Nikolova, R. Bogdan, and D. A. Pizzagalli, “Perception of a naturalistic stressor interacts with 5-HTTLPR/rs25531 genotype and gender to impact reward responsiveness,” Neuropsychobiology, 65, No. 1, 45–54 (2012), https://doi.org/10.1159/000329105.

    Article  PubMed  Google Scholar 

  93. J. D. Kruschwitz, M. Walter, D. Varikuti, et al., “5-HTTLPR/rs25531 polymorphism and neuroticism are linked by resting state functional connectivity of amygdala and fusiform gyrus,” Brain Struct. Funct., 220, No. 4, 2373–2385 (2015), https://doi.org/10.1007/s00429-014-0782-0.

    Article  CAS  PubMed  Google Scholar 

  94. M. N. Servaas, L. Geerligs, J. A. Bastiaansen, et al., “Associations between genetic risk, functional brain network organization and neuroticism,” Brain Imaging Behav., 11, No. 6, 1581–1591 (2017), https://doi.org/10.1007/s11682-016-9626-2.

    Article  PubMed  Google Scholar 

  95. G. M. Hosang, C. Shiles, K. E. Tansey, et al., “Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis,” BMC Med., 12, 7 (2014), https://doi.org/10.1186/1741-7015-12-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. M. M. Youssef, M. D. Underwood, Y. Y. Huang, et al., “Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide,” Int. J. Neuropsychopharmacol., 21, No. 6, 528–538 (2018), https://doi.org/10.1093/ijnp/pyy008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Y. K. Kim, B. J. Ham, and K. M. Han, “Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 91, 4–13 (2019), https://doi.org/10.1016/j.pnpbp.2018.03.009.

    Article  CAS  PubMed  Google Scholar 

  98. K. M. Han, S. Choi, A. Kim, et al., “The effects of 5-HTTLPR and BDNF Val66Met polymorphisms on neurostructural changes in major depressive disorder,” Psychiatry Res. Neuroimag., 273, 25–34 (2018), https://doi.org/10.1016/j.pscychresns.2018.01.005.

    Article  Google Scholar 

  99. T. M. Lancaster, E. A. Heerey, K. Mantripragada, and D. E. Linden, “Replication study implicates COMT val158met polymorphism as a modulator of probabilistic reward learning,” Genes Brain Behav., 14, No. 6, 486–492 (2015), https://doi.org/10.1111/gbb.12228.

    Article  CAS  PubMed  Google Scholar 

  100. A. J. Cleare and L. J. Rane, “Biological models of unipolar depression,” in: The Wiley-Blackwell Handbook of Mood Disorders, M. Power (ed.), Wiley-Blackwell; (2013), 2nd ed.

  101. L. Pani, A. Porcella, and G. L. Gessa, “The role of stress in the pathophysiology of the dopaminergic system,” Mol. Psychiatry, 5, No. 1, 14–21 (2000), https://doi.org/10.1038/sj.mp.4000589.

    Article  CAS  PubMed  Google Scholar 

  102. H. R. Sim, T. Y. Choi, H. J. Lee, et al., “Role of dopamine D2 receptors in plasticity of stress-induced addictive behaviours,” Nat. Commun., 4, 1579 (2013), https://doi.org/10.1038/ncomms2598.

    Article  CAS  PubMed  Google Scholar 

  103. R. Ventura, S. Cabib, and S. Puglisi-Allegra, “Genetic susceptibility of mesocortical dopamine to stress determines liability to inhibition of mesoaccumbens dopamine and to behavioral 'despair' in a mouse model of depression,” Neuroscience, 115, No. 4, 999–1007 (2002), https://doi.org/10.1016/s0306-4522(02)00581-x.

    Article  CAS  PubMed  Google Scholar 

  104. E. J. Nestler and W. A. Carlezon, “The mesolimbic dopamine reward circuit in depression,” Biol. Psychiatry, 59, No. 12, 1151–1159 (2006), https://doi.org/10.1016/j.biopsych.2005.09.018.

    Article  CAS  PubMed  Google Scholar 

  105. R. Bogdan and B. J. Salmeron, “imaging genetics and genomics in psychiatry: A critical review of progress and potential,” Biol. Psychiatry, 82, No. 3, 165–175 (2017), https://doi.org/10.1016/j.biopsych.2016.12.030.

    Article  PubMed  PubMed Central  Google Scholar 

  106. L. W. Hyde, R. Bogdan, and A. R. Hariri, “Understanding risk for psychopathology through imaging gene-environment interactions,” Trends Cogn. Sci., 15, No. 9, 417–427 (2011), https://doi.org/10.1016/j.tics.2011.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  107. R. Bogdan, D. A. Baranger, and A. Agrawal, “Polygenic risk scores in clinical psychology: bridging genomic risk to individual differences,” Annu. Rev. Clin. Psychol., 14, 119–157 (2018), https://doi.org/10.1146/annurev-clinpsy-050817-084847.

    Article  PubMed  PubMed Central  Google Scholar 

  108. S. S. Pathak, S. Maitra, S. Chakravarty, and A. Kumar, “Histone lysine demethylases of JMJD2 or KDM4 family are important epigenetic regulators in reward circuitry in the etiopathology of depression,” Neuropsychopharmacology, 42, No. 4, 854–863 (2017), https://doi.org/10.1038/npp.2016.231.

    Article  CAS  PubMed  Google Scholar 

  109. X. F. Shen, H. B. Yuan, G. Q. Wang, et al., “Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats,” J. Affect. Disord., 252, 373–381 (2019), https://doi.org/10.1016/j.jad.2019.03.062.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kibitov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 121, No. 3, Iss. 1, pp. 146–154, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibitov, A.O., Mazo, G.E. Anhedonia in Depression: Neurobiological and Genetic Aspects. Neurosci Behav Physi 52, 30–38 (2022). https://doi.org/10.1007/s11055-022-01204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01204-8

Keywords

Navigation