Skip to main content
Log in

Discreteness and Continuity of Information in Consciousness

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article addresses the question of how information is organized in the human mind, particularly the fundamental possibility of extracting any kind of structural units from the array of information perceived and processed, and the potential for identifying the smallest, “elementary,” unit of information applicable to consciousness. The process of perception is regarded as a process in which information received from receptors is sequentially generalized, compared with previously acquired experience, and converted to material for forming higher-level abstract concept. The process of “understanding” concepts is considered as a process opposite to the process forming them, i.e., a process during which the mind’s encounter with a previously assimilated concept reactivates the multitude of images and associations which previously served as the material for its formation. The question of identifying key characteristics and most significant associative connections in the array of information is addressed with respect to the normal mind and the pathology of schizophrenia spectrum disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Zeigarnik, Pathopsychology, Moscow University Press, Moscow (1986).

    Google Scholar 

  2. A. M. Ivanitsky, “The cerebral basis of subjective experience: an information synthesis hypothesis,” Zh. Vyssh. Nerv. Deyat., 46, No. 2, 241 (1996).

    Google Scholar 

  3. A. M. Ivanitsky, “’Reading the brain:’ progress, perspectives, and ethical problems,” Zh. Vyssh. Nerv. Deyat., 62, No. 2, 133–142 (2012).

    Google Scholar 

  4. R. S. Orlov and A. D. Nozdrachev, Normal Physiology: A Textbook (2009).

  5. Yu. F. Polyakov, Pathology of Cognitive Activity in Schizophrenia, Moscow (1974).

  6. V. Ya. Sergin, “Perceptual binding of sensory events: the inclusive characteristic hypothesis,” Zh. Vyssh. Nerv. Deyat., 52, No. 6, 645–655 (2002).

    Google Scholar 

  7. V. B. Strelets, “Studies of brain bioelectrical activity in schizophrenia patients: event-related potential data,” Nevropatol. Psikhiatr., 68, No. 1, 82–89 (1968).

    CAS  Google Scholar 

  8. D. A. Allport, “Distributed memory, modular subsystems and dysphasia,” in: Current Perspectives in Dysphasia, S. K. Newman and R. Epstein (eds.), Churchill Livingstone; Edinburgh (1985), pp. 207–244

  9. A. Alonso-Solís, Y. Vives-Gilabert, E. Grasa, et al., “Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations,” Schizophr. Res., 161, No. 2–3, 261–268 (2015).

    Article  PubMed  Google Scholar 

  10. G. T. M. Altmann, The Ascent of Babel: An Exploration of Language, Mind, and Understanding, University Press, Oxford, England (1987).

    Google Scholar 

  11. W. L. Barsalou, “Perceptual symbol systems,” Behav. Brain Sci., 22, No. 4, 557–660 (1999).

    Google Scholar 

  12. A. Bartels and S. Zeki, “The neural correlates of maternal and romantic love,” Neuroimage, 21, 1155–1166 (2004).

    Article  PubMed  Google Scholar 

  13. S. L. Beilock, I. M. Lyons, A. Mattarella-Micke, et al., “Sports experience changes the neural processing of action language,” Proc. Natl. Acad. Sci. USA, 105, No. 36, 13269–13273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. C. Berridge and T. E. Robinson, “What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience,” Brain Res. Rev., 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. A. J. Blood and R. J. Zatorre, “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” Proc. Natl. Acad. Sci. USA, 98, 11818 –11823 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. L. Chao and A. Martin, “Cortical representations of perception, naming and knowing about color,” J. Cogn. Neurosci., 11, 25–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. M. H. Christiansen, J. Allen, and M. Seidenberg, “Learning to segment speech using multiple cues: a connectionist model,” Lang. Cogn. Process., 12, No. 2/3, 221–268 (1998).

    Article  Google Scholar 

  18. E. G. Chrysikou, R. H. Hamilton, H. B. Coslett, et al., “Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use,” Cogn. Neurosci., 4, No. 2, 81–9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. A. D. Craig, “How do you feel? Interoception: the sense of the physiological condition of the body,” Nat. Rev. Neurosci., 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. A. R. Damasio, “The brain binds entities and events by multiregional activation from convergence zones,” Neural Computation, 1, No. 1, 123–132 (1989).

    Article  Google Scholar 

  21. N. I. Eisenberger, M. D. Lieberman, and K. D. Williams, “Does rejection hurt? An fMRI study of social exclusion,” Science, 302, 290–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. J. L. Elman, “Finding structure in time,” Cogn. Sci., 14, 179–211 (1990).

    Article  Google Scholar 

  23. J. L. Elman, “Learning and development in neural networks: the importance of starting small,” Cognition, 48, No. 1, 71–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. H. C. Fibiger and A. G. Phillips, “Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems,” in: Handbook of Physiology, Section 1: The Nervous System, Vol. 4: Intrinsic Regulatory Systems of the Brain, F. E. Bloom (ed.), Oxford University Press, New York (1986), pp. 647–675.

    Google Scholar 

  25. H. C. Fibiger and A. G. Phillips, “Mesocorticolimbic dopamine systems and reward,” Ann. N. Y. Acad. Sci., 537, 206–215 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. A. J. Gaebler, K. Mathiak, J. W. Koten, Jr., et al., “Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia,” Brain, 138, No. 5, 1410–1423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. A. Glenberg and P. M. Kaschak, “Grounding language in action,” Psychon. Bull. Rev., 9, No. 3, 558–565 (2002).

    Article  PubMed  Google Scholar 

  28. M. A. Glenberg, M. Sato, L. Cattaneo, et al., “Processing abstract language modulates motor system activity,” Q. J. Exp. Psychol. (Hove), 61, No. 6, 905–919 (2008).

    Article  Google Scholar 

  29. S. Heckers, “Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and the neurotransmitter-specifi c projection systems,” Schizophr. Bull., 23, No. 3, 403–421 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. K. Hoenig, C. Müller, B. Herrnberger, et al., “Neuroplasticity of semantic representations for musical instruments in professional musicians,” Neuroimage, 56, No. 3, 1714–1725 (2011).

    Article  PubMed  Google Scholar 

  31. K. Hoenig, E. J. Sim, V. Bochev, et al., “Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas,” J. Cogn. Neurosci., 20, No. 10, 1799–814 (2008).

    Article  PubMed  Google Scholar 

  32. M. W. Howard, K. H. Shankar, and U. K. Jagadisan, “Constructing semantic representations from a gradually changing representation of temporal context,” Top. Cogn. Sci., 3, 48–73 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. I. P. Kan, J. W. Kable, A. Van Scoyoc, et al., “Fractionating the left frontal response to tools: dissociable effects of motor experience and lexical competition,” J. Cogn. Neurosci., 18, No. 2, 267–277 (2006).

    Article  PubMed  Google Scholar 

  34. S. Kapur, “Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia,” Am. J. Psychiatry, 160, No. 1, 13–23 (2003).

    Article  PubMed  Google Scholar 

  35. J. Kirby, P. Moore, and N. Schofield, “Verbal and visual learning styles,” Contemp. Educ. Psychol., 13, 169–184 (1988).

    Article  Google Scholar 

  36. D. J. Kraemer, L. M. Rosenberg, and S. L. Thompson-Schill, “The neural correlates of visual and verbal cognitive styles,” J. Neurosci., 29, No. 12, 3792–3798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D. Kumaran, D. Hassabis, and J. L. McClelland, “What learning systems do intelligent agents need? Complementary learning systems theory updated,” Trends Cogn. Sci., 20, 512–534 (2016).

    Article  PubMed  Google Scholar 

  38. D. Kumaran and J. L. McClelland, “Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system,” Psychol. Rev., 119, 573–616 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. J. Kurczek, S. Brown-Schmidt, and M. Duff, “Hippocampal contributions to language: evidence of referential processing deficits in amnesia,” J. Exp. Psychol. Gen., 142, No. 4, 1346–54 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. J. Kurczek and M. C. Duff, “Cohesion, coherence, and declarative memory: Discourse patterns in individuals with hippocampal amnesia,” Aphasiology, 25, No. 6–7, 700–712 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. G. Lakoff and M. Johnson, Metaphors we Live by, London, Chicago (1980).

  42. S. K. Lee, J. W. Chun, J. S. Lee, et al., “Abnormal neural processing during emotional salience attribution of affective asymmetry in patients with schizophrenia,” PLoS One, 9, No. 3, e90792 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. L. L. Long, J. G. Bunce, and J. J. Chrobak, “Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus,” Front. Syst. Neurosci., 9, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. G. Lupyan, “Linguistically modulated perception and cognition: the label-feedback hypothesis,” Front. Psychol., 3, 54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. G. Lupyan, D. Mirman, R. Hamilton, and S. L. Thompson-Schill, “Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex,” Cognition, 124, No. 1, 36–49 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. Martin, J. V. Haxby, F. M. Lalonde, et al., “Discrete cortical regions associated with knowledge of color and knowledge of action,” Science, 379, 649–652 (1995).

    Google Scholar 

  47. A. R. Martin, “Functional neuroimaging of semantic memory,” in: Functional Neuroimaging of Semantic Memory, R. Cabaza and A. Kingstone (eds.), MIT Press, Cambridge, Massachusetts (2001), pp. 153–186.

    Google Scholar 

  48. J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory,” Psychol. Rev., 102, No. 3, 419–457 (1995).

    Article  PubMed  Google Scholar 

  49. V. Menon and D. J. Levitin, “The rewards of music listening: response and physiological connectivity of the mesolimbic system,” Neuroimage, 28, 175–184 (2005).

    Article  CAS  Google Scholar 

  50. V. Menon, “Large-scale brain networks and psychopathology: a unifying triple network model,” Trends Cogn. Sci., 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  51. C. J. Mummery, K. Patterson, J. R. Hodges, and C. J. Price, “Functional neuroanatomy of the semantic system: divisible by what,” J. Cogn. Neurosci., 10, No. 6, 766–777 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. E. Musz and S. L. Thompson-Schill, “Semantic variability predictsneural variability of object concepts,” Neuropsychologia, 76, 41–51(2015).

    Article  PubMed  Google Scholar 

  53. K. A. Norman and R. C. O’Reilly, “Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach,” Psychol. Rev., 110, 611–646 (2002).

    Article  Google Scholar 

  54. D. Ongur and J. L. Price, “The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans,”Cereb. Cortex, 10, 206–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. H. Op de Beeck and R. Vogels, “Spatial sensitivity of Macaque inferior temporal neurons,” J. Comp. Neurol., 426, 505–518 (2000).

    Article  Google Scholar 

  56. L. Palaniyappan and P. F. Liddle, “Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction,” J. Psychiatry Neurosci., 37, No. 1, 17–27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. L. Palaniyappan, M. Simmonite, T. P. White, et al., “Neural primacy of the salience processing system in schizophrenia,” Neuron, 79, 814–828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R. Peyron, B. Laurent, and L. Garcia-Larrea, “Functional imaging of brain responses to pain. A review and meta-analysis,” Neurophysiol. Clin., 30, 263–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. J. A. Phillips, U. Noppeney, G. W. Humphreys, and C. J. Price, “Can segregation within the semantic system account for category-specificdeficits,” Brain, 125, No. 9, 2067–2080 (2002).

    Article  PubMed  Google Scholar 

  60. J. Poppenk, H. R. Evensmoen, M. Moscovitch, and L. Nadel, “Longaxis specialization of the human hippocampus,” Trends Cogn. Sci., 17, No. 5, 230–240 (2013).

    Article  PubMed  Google Scholar 

  61. F. Pulvermüller, M. Härle, and F. Hummel, “Walking or talking?: Behavioral and neurophysiological correlates of action verb processing* 1,” Brain Lang., 78, No. 2, 143–168 (2001).

    Article  PubMed  Google Scholar 

  62. F. Pulvermüller, “How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics,” Trends Cogn. Sci., 17, No. 9, 458–70 (2013).

    Article  PubMed  Google Scholar 

  63. P. S. Quinn and M. H. Johnson, “The emergence of category representations in infants: A connectionist analysis,” J. Exp. Child Psychol., 66, 236–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. P. S. Quinn and M. H. Johnson, “Global before basic category representations in connectionist networks and 2-month-old infants,” Infancy, 1, 31–46 (2000).

    Article  PubMed  Google Scholar 

  65. J. Rodríguez-Ferreiro, S. P. Gennari, R. Davies, and F. Cuetos, “Neural correlates of abstract verb processing,” J. Cogn. Neurosci., 23, No. 1, 106–18 (2011).

    Article  PubMed  Google Scholar 

  66. T. T. Rogers, J. Hocking, A. Mechelli, et al., “Fusiform activation to animals is driven by the process, not the stimulus,” J. Cogn. Neurosci., 17, No. 3, 434–45 (2005).

    Article  PubMed  Google Scholar 

  67. E. Rosch, C. B. Mervis, W. D. Gray, et al., “Basic objects in natural categories,” Cogn. Psychol., 8, 382–439 (1976).

    Article  Google Scholar 

  68. A. C. Schapiro, N. B. Turk-Browne, M. M. Botvinick, and K. A. Norman, “Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning,” Phil. Trans. R. Soc. Lond. B. Biol. Sci., 5, No. 1711, 372 (2017).

    Google Scholar 

  69. W. W. Seeley, V. Menon, A. F. Schatzberg, et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” J. Neurosci., 27, No. 9, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. T. Singer, B. Seymour, J. O’Doherty, et al., “Empathy for pain involves the affective but not sensory components of pain,” Science, 303, 1157–1162 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. K. Tanaka, “Inferotemporal cortex and object vision,” Annu. Rev. Neurosci., 19, 109–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. S. L. Thompson-Schill, G. K. Aguirre, M. D’Esposito, and M. J. Farah, “A neural basis for category and modality specificity of semantic knowledge,” Neuropsychologia, 37, No. 6, 671–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. A. Treisman, “Properties, parts, and objects,” in: Handbook of Human Perception and Performance, K. R. Boff et al. (eds.) (1986), 1st ed., Vol. 2, pp. 37.1–35.70.

  74. W. O. Van Dam, M. van Dijk, H. Bekkering, and S. A. Rueschemeyer, “Flexibility in embodied lexical-semantic representations,” Hum. Brain Mapp., 33, No. 10, 2322–33 (2012).

    Article  PubMed  Google Scholar 

  75. C. L. Wiggs, J. Weisberg, and A. Martin, “Neural correlates of episodic and semantic memory retrieval,” Neuropsychologia, 37, 103–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. R. M. Willems and J. C. Francken, “Embodied cognition: taking the next step,” Front. Psychol., 3, 582 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. R. M. Willems, P. Hagoort, and D. Casasanto, “Body-specific representationsof action verbs: neural evidence from right- and lefthanders,”Psychol. Sci., 21, No. 1, 67–74 (2010).

    Article  PubMed  Google Scholar 

  78. J. M. Wolfe, “Guided Search 2.0: A revised model of visual search,” Psychonom. Bull. Rev., 1, No. 2, 202–238 (1999).

    Article  Google Scholar 

  79. D. Wotruba, K. Heekeren, L. Michels, et al., “Symptom dimensions are associated with reward processing in unmedicated persons at riskfor psychosis,” Front. Behav. Neurosci., 18, No. 8, 382–389 (2014).

    Google Scholar 

  80. S. Yamane, S. Kaji, and K. Kawano, “What facial features activate face neurons in the inferotemporal cortex of the monkey,” Exp.Brain Res., 73, 209–214 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Baklushev.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 1, pp. 77–89, January–March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklushev, M.E., Ivanitsky, G.A. Discreteness and Continuity of Information in Consciousness. Neurosci Behav Physi 51, 1344–1353 (2021). https://doi.org/10.1007/s11055-021-01199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01199-8

Keywords

Navigation