Skip to main content

Advertisement

Log in

NeuroInfoViewer: A Software Package for Analysis of Miniscope Data

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A miniature fluorescence microscope (miniscope) is a promising tool for visualizing in vivo neuronal activity in behaving animals. The data obtained by a miniscope contain massive amounts of information about neuronal activity. However, the extraction and analysis of these data are complex tasks. There are various difficulties in the processing of data obtained by a miniscope, both in the extraction of neural activity data and in the subsequent analysis. A software page, constrained nonnegative matrix factorization for microendoscopic data (CNMF-E), was developed previously to assist in the processing of miniscope data. In this paper, we present a novel software package, NeuroInfoViewer (NIV), for high-level analysis and visualization of miniscope data following initial processing. We present an example of the analysis data flow, from raw miniscope imaging data to CNMF-E and to NIV. We suggest that NIV may serve as a useful tool for high-level analysis of miniscope data and we have deposited NIV in the public domain to facilitate its use by the neuroscience community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Ghosh, L. D. Burns, E. D. Cocker, et al., “Miniaturized integration of a fluorescence microscope,” Nat. Methods, 8, No. 10, 871–878 (2011), https://doi.org/10.1038/nmeth.1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. J. Cai, D. Aharoni, T. Shuman, et al., “A shared neural ensemble links distinct contextual memories encoded close in time,” Nature, 534, No. 7605, 115–118 (2016), https://doi.org/10.1038/nature17955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. de Groot, B. J. van den Boom, R. M. van Genderen, et al., “NINscope, a versatile miniscope for multi-region circuit investigations,” Elife, 9 (2020), https://doi.org/10.7554/eLife.49987.

  4. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, et al., “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods, 5, No. 11, 935–938 (2008), https://doi.org/10.1038/nmeth.1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Shuman, D. Aharoni, D. J. Cai, et al., “Breakdown of spatial coding and interneuron synchronization in epileptic mice,” Nat. Neurosci, 23, No. 2, 229–238 (2020), https://doi.org/10.1038/s41593-019-0559-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. T. Werner, C. J. Williams, M. R. Fermelia, et al., “Circuit mechanisms of neurodegenerative diseases: a new frontier with miniature fluorescence microscopy,” Front Neurosci, 13, No. 1174 (2019), https://doi.org/10.3389/fnins.2019.01174.

  7. Y. Ziv and K. K. Ghosh, “Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents,” Curr. Opin. Neurobiol., 32, No. 141–147 (2015), https://doi.org/10.1016/j.conb.2015.04.001.

  8. E. I. Gerasimov, A. I. Erofeev, S. A. Pushkareva,.et al.,.“Miniature fluorescent microscope: history, application, and data processing,” Zh. Vyssh. Nervn. Deyat., 70, No. 6, 852–864 (2020), https://doi.org/10.31857/S0044467720060040.

    Article  Google Scholar 

  9. G. Barbera, B. Liang, L. Zhang, et al., “Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information,” Neuron, 92, No. 1, 202–213 (2016), https://doi.org/10.1016/j.neuron.2016.08.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Klaus, G. J. Martins, V. B. Paixao, et al., “The spatiotemporal organization of the striatum encodes action space,” Neuron, 96, No. 4, 949 (2017), https://doi.org/10.1016/j.neuron.2017.10.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer, “Automated analysis of cellular signals from large-scale calcium imaging data,” Neuron, 63, No. 6, 747–760 (2009), https://doi.org/10.1016/j.neuron.2009.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. A. Pnevmatikakis, D. Soudry, Y. Gao, et al., “Simultaneous denoising, deconvolution, and demixing of calcium imaging data,” Neuron, 89, No. 2, 285–299 (2016), https://doi.org/10.1016/j.neuron.2015.11.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. Zhou, S. L. Resendez, J. Rodriguez-Romaguera, et al., “Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data,” Elife, 7 (2018), https://doi.org/10.7554/eLife.28728.

  14. J. Lu, C. Li, J. Singh-Alvarado, et al., “MIN1PIPE: a miniscope 1-photon-based calcium imaging signal extraction pipeline,” Cell Rep., 23, No. 12, 3673–3684 (2018), https://doi.org/10.1016/j.celrep.2018.05.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Blanco-Centurion, S. Luo, D. J. Spergel, et al., “Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior,” J. Neurosci., 39, No. 25, 4986–4998 (2019), https://doi.org/10.1523/JNEUROSCI.0305-19.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. A. Frost, A. Haggart, and V. S. Sohal, “Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior,” bioRxiv, No. 2020.08.05.238741 (2020), https://doi.org/10.1101/2020.08.05.238741.

  17. W. G. Gonzalez, H. Zhang, A. Harutyunyan, et al., “Persistence of neuronal representations through time and damage in the hippocampus,” Science, 365, No. 6455, 821–825 (2019), https://doi.org/10.1126/science.aav9199.

    Article  CAS  PubMed  Google Scholar 

  18. L. Sheintuch, A. Rubin, N. Brande-Eilat, et al., “Tracking the same neurons across multiple days in Ca(2+) imaging data,” Cell Rep., 21, No. 4, 1102–1115 (2017), https://doi.org/10.1016/j.celrep.2017.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Erofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, A.I., Barinov, D.S., Gerasimov, E.I. et al. NeuroInfoViewer: A Software Package for Analysis of Miniscope Data. Neurosci Behav Physi 51, 1199–1205 (2021). https://doi.org/10.1007/s11055-021-01179-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01179-y

Keywords

Navigation