Skip to main content
Log in

A Model of the Neural Mechanism of Instrumentalization of Movements Induced by Stimulation of the Motor Cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A model of the neural mechanism of instrumentalization (spontaneous reproduction) of movements induced by reinforcing stimulation of the motor cortex is presented. Instrumentalization is based on strengthening of the excitatory connections of cortical pyramidal neurons: 1) with dopamine neurons and 2) with each other in conditions of “dopamine modulation.” Correct changes to connections between pyramidal neurons are critically dependent on weakening of modulation immediately after neuron activity reaches the target state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, P. K. and Foreword to Konorski, J., Integrative Activity of the Brain [Russian translation], Mir, Moscow (1970).

  • Ashmarin, I. P., Eshchenko, N. D., and Karazeeva, E. P., Neurochemistry in Tables and Diagrams, Examen Press, Moscow (2007).

    Google Scholar 

  • Ballard, I. C., Murty, V. P., Carter, R. M., et al., “Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior,” J. Neurosci., 31, No. 28, 10,340–10,346 (2011).

  • Berridge, K. C., “The debate over dopamine’s role in reward: the case for incentive salience,” Psychopharmacology, 191, 391–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bittner, K. C., Milstein, A. D., Grienberger, C., et al., “Behavioral time scale synaptic plasticity underlies CA1 place fields,” Science, 357, 1033–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolles, R. C., “Reinforcement, expectancy, and learning,” Psychol. Rev., 79, No. 5, 394–409 (1972).

    Article  Google Scholar 

  • Cepeda, C. and Levine, M. S., “Where do you think you are going? The NMDA-D1 receptor trap,” Sci. STKE, 2006, 1–5 (2006).

    Article  Google Scholar 

  • Chen, G., Greengard, P., and Yan, Z., “Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex,” Proc. Natl. Acad. Sci. USA, 101, No. 8, 2596–2600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wit, S. and Dickinson, A., “Associative theories of goal-directed behavior: A case for animal-human translational models,” Psychol. Res., 73, No. 4, 463–476 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanselow, M. S. and Wassum, K. M., “The origins and organization of vertebrate Pavlovian conditioning,” Cold Spring Harb. Perspect. Biol., 8, a021717 (2016).

    Article  PubMed Central  Google Scholar 

  • Fel’dman, A. G., “Central and reflex mechanisms of motor control,” Nauka, Moscow (1979).

    Google Scholar 

  • Flagel, S. B., Clark, J. J., Robinson, T. E., et al., “A selective role for dopamine in stimulus-reward learning,” Nature, 469, No. 7328, 53–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Flores-Hernández, J., Cepeda, K., Hernández-Echeagaray, E., et al., “Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: Role of D1 receptors and DARPP-32,” J. Neurophysiol, 88, 3010–3020 (2002).

    Article  PubMed  Google Scholar 

  • FrĂ©maux, N. and Gerstner, W., “Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules,” Front. Neural Circuits, 9, No. 85, 1–19 (2016).

    Google Scholar 

  • Giszter, S. F., Mussa-lvaldi, F. A., and Emilio Bizzi, E., “Convergent force fields organized in the frog’s spinal cord,” J. Neurosci., 73, No. 2, 467–491 (1993).

    Article  Google Scholar 

  • Glimcher, P. W., “Understanding dopamine and reinforcement learning – the dopamine reward prediction error hypothesis,” Proc. Natl. Acad. Sci. USA, 108, Suppl. 3, 15647–54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano, M. S. A., Taylor, C. S. R., and Moore, T., “Complex movements evoked by microstimulation of precentral cortex,” Neuron, 34, No. 5, 841–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., et al., “Mesolimbic dopamine signals the value of work,” Nat. Neurosci., 19, No. 1, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Heckhausen, H., Motivation and Action [Russian translation], Piter, St. Petersburg (2003).

    Google Scholar 

  • He, K., Huertas, M., Hong, S. Z., et al., “Distinct eligibility traces for LTP and LTD in cortical synapses,” Neuron, 88, 1–11 (2015).

    Article  Google Scholar 

  • Hong, S. and Hikosaka, O., “Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning,” Front. Behav. Neurosci., 5, No. 15, 1–17 (2011).

    Google Scholar 

  • Ilango, A., Kesner, A. J., Broker, C. J., et al., “Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses,” Front. Behav. Neurosci., 8, No. 155, 1–13 (2014).

    Google Scholar 

  • Kim, H. F., Ghazizadeh, A., and Hikosaka, O., “Dopamine neurons encoding long-term memory of object value for habitual behavior,” Cell, 163, 1165–1175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konorski, J., Integrative Activity of the Brain [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  • Lees, A., Mentored by a Madman: The William Burroughs Experiment [Russian translation], Moscow (2020).

  • Lisman, J., “Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 1–11 (2017).

    Article  Google Scholar 

  • Lisman, J., Grace, A. A., and Duzel, E., “A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP,” Trends Neurosci., 34, No. 10, 536–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge, D. J., “The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function,” Neuropsychopharmacology, 36, 1227–1236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiorov, V. I., “Plastic properties of synaptic transmission as a possible mechanism of learning,” in: Nerve Cell Plasticity, Moscow State University Press, Moscow (1977), pp. 70–97.

    Google Scholar 

  • Maiorov, V. I., “Functions of dopamine in operant conditioned reflexes,” Zh. Vyssh. Nerv. Deyat., 68, No. 4, 404–414 (2018).

    Google Scholar 

  • Mohebi, A., Pettibone, J. R., Hamid, A. A., et al., “Dissociable dopamine dynamics for learning and motivation,” Nature, 570, No. 7759, 65–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreines, J. L., Owrutsky, Z. L., and Grace, A. A., “Involvement of infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after stress,” Neuropsychopharmacology, 42, 904–913 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, I. P., “The physiological mechanisms of so-called spontaneous movements,” in: 20 Years of Experience of Objective Studies of Higher Nervous Activity (Behavior) in Animals, Nauka, Moscow (1973), pp. 481–485.

  • Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr, J. D., “Timing is not everything: neuromodulation opens the STDP gate,” Front. Synaptic Neurosci., 2, Art. 146 (2010).

    Article  Google Scholar 

  • Rescorla, R. A., “Pavlovian conditioning. It’s not what you think it is,” Am. Psychol., 43, No. 3, 151–160 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S., Sandstrom, S. M., Denenberg, V. H., and Palmiter, R. D., “Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards,” Behav. Neurosci., 119, No. 1, 5–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Roitman, M. F., Stuber, G. D., Phillips, P. E., et al., “Dopamine operates as a subsecond modulator of food seeking,” J. Neurosci., 24, No. 6, 1265–1271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders, B. T., Richard, J. M., Margolis, E. B., and Janak, P. H., “Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties,” Nat. Neurosci., 21, 1072–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, W., Stauffer, W. R., and Lak, A., “The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility,” Curr. Opin. Neurobiol., 43, 139–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sesack, S. R. and Carr, D. B., “Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia,” Physiol. Behav., 77, 513–517 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shahaf, G. and Marom, S., “Learning in networks of cortical neurons,” J. Neurosci., 21, No. 22, 8782–8788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shouval, H. Z., Wang, S. S.-H., and Wittenberg, G. M., “Spike timing dependent plasticity: a consequence of more fundamental learning rules,” Front. Comput. Neurosci., 4, Art. 19, 1–13 (2010).

  • Sinapayen, L., Masumori, A., and Ikegami, T., “Learning by stimulation avoidance: A principle to control spiking neural networks dynamics,” PLoS One, 12, No. 2, e0170388 (2017).

  • Stewart, C. V. and Plenz, D., “Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex,” J. Neurosci., 26, No. 31, 8148–8159 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, H. C., Zhang, F., Adamantidis, A., et al., “Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning,” Science, 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waelti, P., Dickinson, A., and Schultz, W., “Dopamine responses comply with basic assumptions of formal learning theory,” Nature, 412, No. 6842, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Walker, E. L., “Reinforcement – The one ring,” in: Reinforcement and Behavior, Trapp, J. T. (ed.), Academic Press, New York (1969), pp. 47–62 (cited by [Khekkhauzen, 2003]).

  • Wang, S., Liao, C., Meng, W., et al., “Activation of D1-like dopamine receptors increases the NMDA-induced gain modulation through a PKA-dependent pathway in the premotor nucleus of adult zebra finches,” Neurosci. Lett., 589, 37–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Watabe-Uchida, M., Eshel, N., and Uchida, N., “Neural circuitry of reward prediction error,” Annu. Rev. Neurosci., 40, 373–394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watabe-Uchida, M., Zhu, L., Ogawa, S. K., et al., “Whole-brain mapping of direct inputs to midbrain dopamine neurons,” Neuron, 74, No. 5, 858–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A. and Koob, G. F., “The development and maintenance of drug addiction,” Neuropsychopharmacology, 39, 254–262 (2014).

    Article  PubMed  Google Scholar 

  • Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. S. R., et al., “A critical time window for dopamine actions on the structural plasticity of dendritic spines,” Science, 345, No. 6204, 1616–1620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H. H. and Knowlton, B. J., “The role of the basal ganglia in habit formation,” Nat. Rev. Neurosci., 7, No. 6, 464–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zellner, M. R. and Ranaldi, R., “How conditioned stimuli acquire the ability to activate VTA dopamine cells: A proposed neurobiological component of reward-related learning,” Neurosci. Biobehav. Rev., 34, No. 5, 769–780 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maiorov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 2, pp. 202–212, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, V.I. A Model of the Neural Mechanism of Instrumentalization of Movements Induced by Stimulation of the Motor Cortex. Neurosci Behav Physi 51, 1124–1131 (2021). https://doi.org/10.1007/s11055-021-01172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01172-5

Keywords

Navigation