Skip to main content
Log in

Clinical and Biochemical Heterogeneity of Parkinson’s Disease

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To study the relationship between measures of oxidative stress and clinical changes in patients with neurodegenerative parkinsonism and identify clinical and biological subtypes of the disease. Materials and methods. The study included 109 subjects, of whom 91 were patients with neurodegenerative parkinsonism (72 patients with Parkinson’s disease (PD), 10 with multisystem atrophy (MSA), nine with corticobasal degeneration; mean age 61.1 ± 7.2 years) and 18 were clinically healthy people, mean age 55.1 ± 9.2 years. Peripheral blood redox status in PD patients and healthy subjects was assessed by assay of indicators of oxidative stress. Biochemical indicators were determined in RBC and mononuclear blood cells. Glutathione reductase (GR) and myeloperoxidase (MPO) activities were assayed, along with reduced glutathione levels. Results and conclusions. Oxidative stress is a universal mechanism and is seen in many neurodegenerative diseases. Nonetheless, quite characteristic changes in redox balance could be detected, defining groups and correlating them with particular subtypes and courses of PD, providing an opportunity for differential diagnosis from atypical parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Braak, K. Del Tredici, U. Rub, et al., “Staging of brain pathology related to sporadic Parkinson’s disease,” Neurobiol. Aging, 24, No. 2, 197–211 (2003), https://doi.org/10.1016/s0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  2. O. S. Levin and N. V. Fedorova, Parkinson’s Disease, MEDpress-Inform, Moscow (2015).

    Google Scholar 

  3. W. S. Kim, K. Kagedal, and G. M. Halliday, “Alpha-synuclein biology in Lewy body diseases,” Alzheimers Res. Ther., 6, No. 5, 73 (2014), https://doi.org/10.1186/s13195-014-0073-2.

  4. C. Foguem and P. Manckoundia, “Lewy body disease: clinical and pathological “overlap syndrome” between synucleinopathies (Parkinson disease) and tauopathies (Alzheimer disease),” Curr. Neurol. Neurosci. Rep., 18, No. 5, 24–33 (2018), https://doi.org/10.1007/s11910-018-0835-5.

    Article  CAS  PubMed  Google Scholar 

  5. R. S. Subramaniam and M.-F. Chesselet, “Mitochondrial dysfunction and oxidative stress in Parkinson’s disease,” Prog. Neurobiol., 17–32 (2013), https://doi.org/10.1016/j.pneurobio.2013.04.004.

  6. V. R. Kovalenko, E. A. Khabarova, D. A. Rzaev, and S. P. Medvedev, “Cellular models, genomic technologies, and clinical practice: a synthesis of knowledge for the study of the mechanisms, diagnostics, and treatment of Parkinson’s disease,” Geny Kletki, 12, No. 2, 11–28 (2017), https://doi.org/10.23868/201707012.

  7. O. Hwang, “Role of oxidative stress in Parkinson’s disease,” Exp. Neurobiol., 22, No. 1, 11–17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. T. N. Fedorova, A. A. Logvinenko, V. V. Poleshchuk, and S. N. Illarioshkin, “The state of systemic oxidative stress in Parkinson’s disease,” Neirokhimiya, 34, No. 4, 344–349 (2017), https://doi.org/10.7868/S1027813317040033.

    Article  Google Scholar 

  9. E. C. Graciun, E. Dronca, and N. V. Leach, “Antioxidant enzymes activity in subjects with Parkinson’s disease under L-DOPA therapy,” Hum. Vet. Med., 8, No. 2, 124–127 (2016).

    Google Scholar 

  10. R. M. Naduthota, R. D. Bharath, K. Jhunjhunwala, et al., “Imaging biomarker correlates with oxidative stress in Parkinson’s disease,” Neurol. India, 65, No. 2, 263–268 (2017).

    Article  PubMed  Google Scholar 

  11. V. Tapias, “Mitochondrial dysfunction and neurodegeneration,” Front. Neurosci., 13, 1372 (2019), https://doi.org/10.3389/fnins.2019.01372.

    Article  PubMed  PubMed Central  Google Scholar 

  12. R. Kaur, S. Mehan, and S. Singh, “Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management,” Neurol. Sci., 40, 13–23 (2019).

    Article  PubMed  Google Scholar 

  13. N. A. Kaidery and B. Thomas, “Current perspective of mitochondrial biology in Parkinson’s disease,” Neurochem. Int., 117, No. 7, 91–113 (2018), https://doi.org/10.1016/j.neuint.2018.03.001.

    Article  CAS  PubMed Central  Google Scholar 

  14. A. J. Kurt, “Neuropathology of multiple system atrophy: New thoughts about pathogenesis,” Mov. Disord., 29, 14 (2014), https://doi.org/10.1002/mds.26052.

    Article  CAS  Google Scholar 

  15. M. Hoehn and M. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, 17, No. 5, 427–442 (1967), https://doi.org/10.1212/wnl.17.5.427.

    Article  CAS  PubMed  Google Scholar 

  16. Unified Parkinson’s Disease Rating Scale (UPDRS) [online document], Parkinson’s UK, Feb 5, 2020, https://www.parkinsons.org.uk/professionals/resources/unified-parkinsons-disease-rating-scale-updrs, acc. Dec. 4, 2020.

  17. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini-mental state. A practical method for grading the cognitive state of patients for the clinician,” J. Psychiatr. Res., 12, No. 3, 189–198 (1975), https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  18. T. Sunderland, J. Hill, A. M. Mellow, et al,” J. Am. Geriatr. Soc., 37, No. 8, 725–729 (1989), https://doi.org/10.1111/j.1532-5415.1989.tb02233.x.

  19. B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a Frontal Assessment Battery at bedside,” Neurology, 55, No. 11, 1621–1626 (2000), https://doi.org/10.1212/wnl.55.11.1621.

    Article  CAS  PubMed  Google Scholar 

  20. N. V. Fedorova and A. Yu. Yablonskaya, A Scale for Assessment of Autonomic Impairments in Patients with Parkinson’s Disease: Methodological Guidelines [online version], Moscow (2011), https://www.parkinsonizm.ru/?page=26, acc. Dec. 26, 2020.

  21. V. V. Zakharov and T. G. Voznesenskaya, Neuropsychological Impairments. Diagnostic Tests, MEDpress-Inform, Moscow (2013), pp. 257–260.

  22. M. Hamilton, “A rating scale for depression,” J Neurol. Neurosurg. Psychiatry, 23, No. 1, 56–62 (1960), https://doi.org/10.1136/jnnp.23.1.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. W. Johns, “A new method for measuring daytime Sleepiness: the Epworth Sleepiness scale,” Sleep, 14, No. 6, 540–545 (1991), https://doi.org/10.1093/sleep/14.6.540.

    Article  CAS  PubMed  Google Scholar 

  24. K. Chaudhuri, S. Pal, A. Di Marco, et al., “The Parkinson’s Disease Sleep Scale: a new instrument for assessing sleep and nocturnal disability in Parkinson’s disease,” J Neurol. Neurosurg. Psychiatry, 73, No. 6, 629–635 (2002), https://doi.org/10.1136/jnnp.73.6.629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. B. Postuma, I. Arnulf, B. Hogl, et al., “A single-question screen for rapid eye movement sleep behavior disorder: a multicenter validation study,” Mov. Disord., 27, No. 7, 913–916 (2012), https://doi.org/10.1002/mds.25037.

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. D. Guo, X. Zhao, Y. Li, and X. L. Liu, “Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review),” Int. J. Mol. Med., 41, No. 4, 1817–1825 (2018), https://doi.org/10.3892/ijmm.2018.3406.

    Article  CAS  PubMed  Google Scholar 

  27. Z. Wei, X. Li, X. Li, et al., “Oxidative stress in Parkinson’s disease: A systematic review and meta-analysis,” Front. Mol. Neurosci., 11, 236 (2018), https://doi.org/10.3389/fnmol.2018.00236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E. E. Vasenina and O. S. Levin, “Oxidative stress in the pathogenesis of neurodegenerative diseases: potential for treatment,” Sovrem. Ter. Psikhiatrii Nevrol., No. 3–4, 39–46 (2013).

  29. A. Böyum, “Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g,” Scand. J. Clin. Lab. Invest., Supplement, 97, 77–89 (1968).

    Google Scholar 

  30. Q. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys., 82, No. 1, 70–77 (1959), https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  CAS  PubMed  Google Scholar 

  31. M. Deponte, “Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes,” Biochim. Biophys. Acta, 1830, No. 5, 3217–3266 (2013), https://doi.org/10.1016/j.bbagen.2012.09.018.

    Article  CAS  PubMed  Google Scholar 

  32. L. K. Mischley, L. J. Standish, N. S. Weiss, et al., “Glutathione as a biomarker in Parkinson’s disease: Associations with aging and disease severity,” Oxid. Med. Cell. Longev., 2016, 9409363 (2016), https://doi.org/10.1155/2016/9409363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. J. Cha, H. Kim, H.-J. Choi, et al., “Protein glutathionylation in the pathogenesis of neurodegenerative diseases,” Oxid. Med. Cell. Longev., 2017, 2818565 (2017), https://doi.org/10.1155/2017/2818565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. I. Khadzieva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 12, Iss. 1, pp. 80–85, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzieva, K.I., Chernikova, I.V., Milyutina, N.P. et al. Clinical and Biochemical Heterogeneity of Parkinson’s Disease. Neurosci Behav Physi 51, 1073–1078 (2021). https://doi.org/10.1007/s11055-021-01167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01167-2

Keywords

Navigation