Skip to main content
Log in

Analysis of Paradoxical Neurophysiological Reactions at Different Stages of the Perception of Negative Emotional Stimuli in Schizophrenia Patients

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This report addresses studies of brain activation in response to neutral and emotionally significant (threatening) stimuli using brain event-related potentials in healthy subjects and patients with paranoid schizophrenia. Threatening stimuli, as being more significant, induced greater activation (shortened latency and increased amplitude) in the occipital and posterior temporal areas in response to these stimuli as compared with neutral stimuli in both groups of subjects in a between-group study. This occurred on the right at 200 msec, then on the left at 300 msec, and then again on the right at 400 msec. Patients, starting from the P200 wave, responded to significant stimuli with an effect which was paradoxical from the physiological point of view. Thus, at 200 msec after stimulus presentation, the left inferior frontal area showed increases in amplitude and latency of the P200 wave, while decreases in both these parameters were seen in the right frontal and central areas along the midline. At 300 msec after the stimulus, paradoxical effects in the form of increases in both parameters were noted in the left prefrontal and right inferior frontal and decreases in the left inferior frontal and central areas along the midline. At 400 msec, paradoxical effects were seen in the left prefrontal and right inferior frontal areas in the form of increases in both parameters, and in the right prefrontal area in the form of decreases. Between-group comparison showed that as compared with normal, patients could display either increases or decreases in both parameters of all components of event-related potentials starting from the P200 wave, i.e., the pathological state of the anterior cerebral areas in response to this category of stimuli, which may be due to some alternative factors. This might be explicable in terms of impairments to neural networks due to pathological processes of aberrant pruning in schizophrenia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Darwin, The Expression of the Emotions in Man and Animals, John Murray, London (1872).

    Book  Google Scholar 

  2. A. S. Tiganov, Manual of Psychiatry, Meditsina, Moscow (1999), Vol. 1.

  3. K. Yaspers, General Psychopathology, Praktika, Moscow (1997).

    Google Scholar 

  4. E. Bleuler, Dementia Praecox or the Group of Schizophrenias, Franz Deuticke, Leipzig und Wien (1911).

    Google Scholar 

  5. O. D. Howes and S. Kapur, “The dopamine hypothesis of schizophrenia: version III — the final common pathway,” Schizophr. Bull., 35, No. 3, 549–562 (2009).

    Article  Google Scholar 

  6. S. Gepshtein, L. Xiaoyan, J. Snider, et al., “Dopamine function and the efficiency of human movement,” J. Cogn. Neurosci., 26, No. 3, 645–657 (2014).

    Article  Google Scholar 

  7. B. Pillon, V. Czernecki, and B. Dubois, “Dopamine and cognitive function,” Curr. Opin. Neurol., 16, No. 2, S17–S22 (2003).

    Article  CAS  Google Scholar 

  8. K. S. Chiew and T. S. Braver, “Positive affect versus reward: emotional and motivational influences on cognitive control,” Front. Psychol., 2, 279 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. J. Gigg, A. M. Tan, and D. M. Finch, “Glutamatergic hippocampal formation projections to prefrontal cortex in the rat are regulated by GABAergic inhibition and show convergence with glutamatergic projections from the limbic thalamus,” Hippocampus, 4, No. 2, 189–198 (1994).

  10. Y. Okubo, T. Suhara, K. Suzuki, et al., “Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET,” Nature, 385, No. 6617, 634–636 (1997).

  11. A. K. McAllister, “Dynamic aspects of CNS synapse formation,” Annu. Rev. Neurosci., 30, 425–450 (2007).

    Article  CAS  Google Scholar 

  12. G. Faludi and K. Mirnics, “Synaptic changes in the brain of subjects with schizophrenia,” Int. J. Dev. Neurosci., 29, No. 3, 305–309 (2011).

    Article  Google Scholar 

  13. A. Heinz and F. Schlagenhauf, “Dopaminergic dysfunction in schizophrenia: salience attribution revisited,” Schizophr. Bull., 36, 472–485 (2010).

    Article  Google Scholar 

  14. J. M. Ford, “Studying auditory verbal hallucinations using the RDoC framework,” Psychophysiology, 53, No. 3, 298–304 (2016).

  15. V. B. Strelets and A. Yu. Arkhipov, “Influences of threatening stimuli on the event-related potential P200 component in patients with paranoid schizophrenia,” Fiziol. Cheloveka, 41, No. 5, 66–73 (2015).

    CAS  PubMed  Google Scholar 

  16. L. Sanfratello, J. M. Houck, and V. D. Calhoun, “Relationship between MEG global dynamic functional network connectivity measures and symptoms in schizophrenia,” Schizophr. Res., (2019).

  17. B. A. Clementz, M. A. Geyer, and D. L. Braff, “P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis,” Biol. Psychiatry, 41, 1035–1044 (1997).

    Article  CAS  Google Scholar 

  18. A. M. Ivanitskii, V. B. Strelets, and I. A. Korsakov, Information Processes of the Brain and Mental Activity, Nauka (1984).

  19. S. A. Hillyard, E. K. Vogel, and S. J. Luck, “Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence,” Phil. Trans. Roy. Soc. Biol. Sci., 353, 1257–1270 (1998).

    Article  CAS  Google Scholar 

  20. R. Näätänen, S. Pakarinen, T. Rinne, and R. Takegata, “The mismatch negativity (MMN), towards the optimal paradigm,” Clin. Neurophysiol., 115, 140–144 (2007).

    Article  Google Scholar 

  21. J. Polich, “Clinical application of the P300 event-related potential,” Phys. Med. Rehab Clin., 15, 133–161 (2004).

    Article  Google Scholar 

  22. K. N. Ochsner, R. R. Ray, B. Hughes, et al., “Bottom-up and top-down processes in emotion generation common and distinct neural mechanisms,” Psychol. Sci., 20, No. 11, 1322–1331 (2009).

    Article  Google Scholar 

  23. A. Y. Arkhipov, A. V. Maslennikova, V. L. Ushakov, and V. B. Strelets, “fMRI on affective stimuli in patients with paranoid schizophrenia,” Curr. Trends Biomed. Eng. Biosci., 7, No. 4, 555718 (2017).

  24. G. F. Woodman, “A brief introduction to the use of event-related potentials (ERPs) in studies of perception and attention,” Atten. Percept. Psychophys., 72, No. 8, 2031–2046 (2010).

    Article  Google Scholar 

  25. G. Gonzalez-Burgos, R. Y. Cho, and D. A. Lewis, “Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia,” Biol. Psychiatry, 77, No. 12, 1031–1040 (2015).

    Article  CAS  Google Scholar 

  26. R. D. Burwell, “The parahippocampal region: corticocortical connectivity,” Ann. N. Y. Acad. Sci., 911, 25–42 (2000).

    Article  CAS  Google Scholar 

  27. P. D. MacLean, “Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain),” Electroencephalogr. Clin. Neurophysiol, 4, 407–418 (1957).

    Article  Google Scholar 

  28. V. P. Dyagterev and S. S. Pertsov, Neurophysiology, GEOTAR-Media, Moscow (2018).

    Google Scholar 

  29. J. LeDoux, “The emotional brain, fear, and the amygdala,” Cell. Mol. Neurobiol., 23, No. 4–5, 727–738 (2003).

    Article  Google Scholar 

  30. P. V. Simonov, The Emotional Brain, Nauka, Moscow (1981).

    Google Scholar 

  31. U. Weiss, J. B. Salloum, and F. Schneider, “Correspondence of emotional self-rating with facial expression,” Psychiatry Res., 86, No. 2, 175–184 (1999).

    Article  CAS  Google Scholar 

  32. H. Kosaka, M. Omori, T. Murata, et al., “Differential amygdala response during facial recognition in patients with schizophrenia: an fMRI study,” Schizophr. Res., 57, 87–95 (2002).

    Article  CAS  Google Scholar 

  33. E. Fernandez-Egea, E. Parellada, F. Lomena, et al., “FDG PET study of amygdalar activity during facial emotion recognition in schizophrenia,” Eur. Arch. Psychiatry Clin. Neurosci., 260, 69–76 (2010).

    Article  Google Scholar 

  34. D. J. Holt, E. A. Boeke, and G. Coombs, 3rd, et al., “Abnormalities in personal space and parietal-frontal function in schizophrenia,” NeuroImage Clin, 9, 233–243 (2015).

    Article  Google Scholar 

  35. V. V. Gnezditskii, Event-Related Brain Potentials in Clinical Practice, TRTU, Taganrog (1997).

    Google Scholar 

  36. D. Horn and E. Ruppin, “Compensatory mechanisms in an attractor neural network model of schizophrenia,” Neural. Comput., 7, No. 1, 182–205 (1996).

    Article  CAS  Google Scholar 

  37. H. K. Horton and S. M. Silverstein, “Visual context processing deficits in schizophrenia: effects of deafness and disorganization,” Schizophr. Bull., 37, No. 4, 716–726 (2011).

    Article  Google Scholar 

  38. M. Kutas and K. D. Federmeier, “N400,” Scholarpedia, 4, 7790 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Arkhipov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 107, No. 1, pp. 119–132, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelets, V.B., Rodionov, G.I., Nurbekov, M.K. et al. Analysis of Paradoxical Neurophysiological Reactions at Different Stages of the Perception of Negative Emotional Stimuli in Schizophrenia Patients. Neurosci Behav Physi 51, 985–992 (2021). https://doi.org/10.1007/s11055-021-01156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01156-5

Keywords

Navigation