Skip to main content
Log in

Generalization of Contextual Fear Depends on the Activity of the Serotonin System of the Medial Prefrontal Cortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The medial prefrontal cortex (mPFC) is involved in regulating fear generalization. We have previously shown that the formation of generalized fear in response to sound signals is controlled by the serotonin system of the mPFC, as its pharmacological activation during acquisition of a conditioned fear reflex (CFR – a model of fear) increases at the stage of testing the manifestation of fear induced by safe sound stimuli. The aim of the present work was to determine whether the serotonin system of the mPFC is involved in the process of fear generalization. Studies in Sprague–Dawley rats using vital intracranial microdialysis showed that placing animals in potentially dangerous box A, in which they had previously acquired a CFR (a conditioned signal combined with unavoidable electrocutaneous shock), was accompanied by an increase in the extracellular serotonin level in the mPFC and induced freezing of the animals (an indicator of contextual fear). Placing the same animals in safe differential box B also led to an increase in the extracellular serotonin level in the mPFC and induced freezing of the animals (an indicator of generalized contextual fear). Administration of fluoxetine (1 μM), a selective serotonin reuptake inhibitor, into the mPFC during CFR acquisition increased freezing of the animals in safe box B at the test stage but did not affect freezing in box A. This pharmacological intervention did not alter the magnitude of increases in extracellular serotonin levels in the mPFC induced by being in boxes A or B. These data provide evidence that activation of the serotonin system of the mPFC during the formation of fear influences the extent of contextual fear generalization. In addition, our results suggest that increases in mPFC serotonin system activity by safe contextual stimuli may be among the neurochemical manifestations of generalized contextual fear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Greenberg, J. M. Carlson, J. Cha, et al., “Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization,” Depress. Anxiety, 30, No. 3, 242–250 (2013), https://doi.org/10.1002/da.22016.

    Article  PubMed  Google Scholar 

  2. R. R. Rozeske, S. Valerio, F. Chaudun, and C. Herry, “Prefrontal neuronal circuits of contextual fear conditioning,” Genes Brain Behav., 14, No. 1, 22–36 (2015), https://doi.org/10.1111/gbb.12181.

    Article  CAS  PubMed  Google Scholar 

  3. A. Corches, A. Hiroto, T. W. Bailey, et al., “Differential fear conditioning generates prefrontal neural ensembles of safety signals,” Behav. Brain Res., 360, 169–184 (2019), https://doi.org/10.1016/j.bbr.2018.11.042.

    Article  PubMed  Google Scholar 

  4. J. E. Dunsmoor, M. C. Kroes, S. H. Braren, and E. A. Phelps, “Threat intensity widens fear generalization gradients,” Behav. Neurosci., 131, No. 2, 168–175 (2017), https://doi.org/10.1037/bne0000186.

    Article  PubMed  PubMed Central  Google Scholar 

  5. T. Jovanovic, A. Kazama, J. Bachevalier, and M. Davis, “Impaired safety signal learning may be a biomarker of PTSD,” Neuropharmacology, 62, No. 2, 695–704 (2012), https://doi.org/10.1016/j.neuropharm.2011.02.023.

    Article  CAS  PubMed  Google Scholar 

  6. R. K. Pitman, A. M. Rasmusson, K. C. Koenen, et al., “Biological studies of post-traumatic stress disorder,” Nat. Rev. Neurosci., 13, No. 11, 769–787 (2012), https://doi.org/10.1038/nrn3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. N. Kaczkurkin, P. C. Burton, S. M. Chazin, et al., “Neural substrates of overgeneralized conditioned fear in PTSD,” Am. J. Psychiatry, 174, No. 2, 125–134 (2017), https://doi.org/10.1176/appi.ajp.2016.15121549.

    Article  PubMed  Google Scholar 

  8. R. A. Morey, J. E. Dunsmoor, C. C. Haswell, et al., “Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder,” Transl. Psychiatry, 5, No. 12, e700 (2015), https://doi.org/10.1038/tp.2015.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. B. Saulskaya and O. E. Marchuk, “Inhibition of serotonin reuptake in the medial prefrontal cortex during acquisition of a conditioned fear response promotes the formation of generalized fear,” Zh. Vyssh. Nerv. Deyat., 69, No. 3, 343–353 (2019), https://doi.org/10.1134/S0044467719030134.

    Article  Google Scholar 

  10. W. Xu and T. C. Sudhof, “A neural circuit for memory specificity and generalization,” Science, 339, No. 6125, 1290–1295 (2013), https://doi.org/10.1126/science.1229534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Zelikowsky, S. Bissiere, T. A. Hast, et al., “Prefrontal microcircuit underlies contextual learning after hippocampal loss,” Proc. Natl. Acad. Sci. USA, 110, No. 24, 9938–9943 (2013), https://doi.org/10.1073/pnas.1301691110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. I. Liberzon and J. L. Abelson, “Context processing and the neurobiology of post-traumatic stress disorder,” Neuron, 92, No. 1, 14–30 (2016), https://doi.org/10.1016/j.neuron.2016.09.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. B. Saulskaya, and O. E. Marchuk, “Serotonin system activity in the prefrontal cortex in rats with high and how levels of contextual fear generalization,” Ros. Fiziol. Zh., 104, No. 4, 466–476 (2018).

    Google Scholar 

  14. N. B. Saulskaya and P. V. Sudorgina, “Activity of the nitrergic system of the medial prefrontal cortex in rats with high and low levels of generalization of conditioned reflex fear reactions,” Zh. Vyssh. Nerv. Deyat., 65, No. 3, 372–381 (2015), https://doi.org/10.7868/S0044467715030090.

    Article  CAS  Google Scholar 

  15. N. B. Saulskaya and N. V. Fofonova, “Effects of N-methyl-Daspartate on extracellular citrulline level in the rat nucleus accumbens,” Neurosci. Lett., 407, No. 1, 91–95 (2006), https://doi.org/10.1016/j.neulet.2006.08.010.

    Article  CAS  PubMed  Google Scholar 

  16. P. De Deurwaerdere and G. Di Giovanni, “Serotonin in health and disease,” Int. J. Mol. Sci., 21, No. 10, 3500 (2020), https://doi.org/10.3390/ijms21103500.

    Article  PubMed Central  Google Scholar 

  17. E. P. Bauer, “Serotonin in fear conditioning processes,” Behav. Brain Res., 277, 68–77 (2015), https://doi.org/10.1016/j.bbr.2014.07.028.

    Article  CAS  PubMed  Google Scholar 

  18. K. C. Klemenhagen, J. A. Gordon, D. J. David, et al., “Increased fear response to contextual cues in mice lacking the 5-HT1A receptor,” Neuropsychopharmacology, 31, No. 1, 101–111 (2006).

    Article  CAS  Google Scholar 

  19. L. K. Pedraza, R. O. Sierra, M. Giachero, et al., “Chronic fluoxetine prevents fear memory generalization and enhances subsequent extinction by remodeling hippocampal dendritic spines and slowing down system consolidation,” Transl. Psychiatry, 9, No. 1, 53 (2019), https://doi.org/10.1038/s41398-019-0371-3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. C. N. J. Meunier, M. Amar, L. Lanfumey, et al., “5-HT1A receptors direct the orientation of plasticity in layer 5 pyramidal neurons of the mouse prefrontal cortex,” Neuropharmacology, 71, 37–45 (2013), https://doi.org/10.1016/j.neuropharm.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  21. C. N. J. Meunier, J. Callebert, and J. M. Cancela, “Effect of dopamine D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex,” PLoS One, 10, No. 3, e0120286 (2015), https://doi.org/10.1371/journal.pone.0120286.

  22. E. Likhtik, J. M. Stujenske, M. Topiwala, et al., “Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety,” Nat. Neurosci., 17, No. 1, 106–113 (2014), https://doi.org/10.1038/nn.3582.

    Article  CAS  PubMed  Google Scholar 

  23. S. Hashimoto, T. Inoue, and T. Koyama, “Effect of conditioned fear stress on serotonin neurotransmission and freezing behavior in rats,” Eur. J. Pharmacol., 378, No. 1, 23–30 (1999), https://doi.org/10.1016/S0014-2999(99)00441-0.

    Article  CAS  PubMed  Google Scholar 

  24. S. T. Bland, D. Hargrave, J. L. Pepin, et al., “Stressor controllability modulates stress-induced dopamine and serotonin efflux in the medial prefrontal cortex,” Neuropsychopharmacology, 28, No. 9, 1589–1596 (2003), https://doi.org/10.1038/sj.npp.1300206.

    Article  CAS  PubMed  Google Scholar 

  25. R. C. Almada, N. C. Coimbra, and M. L. Brandao, “Medial prefrontal cortex serotonergic and GABAergic mechanisms modulate the expression of Contextual fear: intratelencephalic pathways and differential involvement of cortical subregions,” Neuroscience, 284, No. 11, 988–997 (2015), https://doi.org/10.1016/j.neuroscience.2014.11.001.

  26. L. A. Leon, V. Castro-Gomes, S. Zarate-Guerrero, et al., “Behavioral effects of systemic, infralimbic and prelimbic injections of a serotonin 5-HT 2A antagonist in carioca high- and low-conditioned freezing rats,” Front. Behav. Neurosci., 11, 117 (2017), https://doi.org/10.3389/fnbeh.2017.00117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Saulskaya.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 12, pp. 1541–1552, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulskaya, N.B., Marchuk, O.E. Generalization of Contextual Fear Depends on the Activity of the Serotonin System of the Medial Prefrontal Cortex. Neurosci Behav Physi 51, 954–959 (2021). https://doi.org/10.1007/s11055-021-01152-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01152-9

Keywords

Navigation