Skip to main content
Log in

Developmental Dynamics of the Functional State of the Retina in Mice with Inherited Photoreceptor Degeneration

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The standard model system for studies of inherited retinal pathologies consists of C3H mice, which have a mutation in the Pde6b gene. These animals show impairment to the functioning of rod phosphodiesterase, leading to photoreceptor death and complete loss of vision by day 4 of life. C3H mice obtained from Charles River Laboratories – strain C3H/Crl – were found to have an additional mutation in the Gpr179 gene, which leads to impairment to the operation of the transduction cascade of retinal ON bipolar cells. Despite the wide use of C3H/Crl mice as a study system, detailed investigation of the characteristics of the photoreceptor degeneration process has yet to be carried out. The aim of the present work was to study the time dynamics of morphological and functional changes occurring at early age in the retinas of C3H/Crl mice. The control group consisted of wild-type mice, i.e., strain C57Bl/6J. The functional state of the retina was assessed using in vivo electroretinography, with morphological analysis of histological preparations of eye tissues. Retinal responses to light stimulation in C3H/Crl mice were found not to involve any contribution from rods or ON bipolar cells throughout the measurement period, starting from day 18 of life, while cone responses disappeared by day 25. The numbers of photoreceptors and neurons in the inner nuclear layer of the retina in C3H/Crl mice were decreased by day 16 of life and photoreceptors almost completely degenerated by day 25. At the same time, response amplitude and retinal sensitivity in wild-type mice underwent no significant changes at early age. These data suggest a picture of the development of retinal pathology in C3H/Crl mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ferrari, E. Di Iorio, V. Barbaro, et al., “Retinitis pigmentosa: genes and disease mechanisms,” Curr. Genomics, 12, No. 4, 238–249 (2011).

    Article  CAS  Google Scholar 

  2. C. Hamel, “Retinitis pigmentosa,” Orphanet. J. Rare Dis., 1, No. 1, 40 (2006).

  3. D. T. Hartong, E. L. Berson, and T. P. Dryja, “Retinitis pigmentosa,” Lancet, 368, No. 9549, 1795–1809 (2006).

  4. J. Sancho-Pelluz, B. Arango-Gonzalez, S. Kustermann, et al., “Photoreceptor cell death mechanisms in inherited retinal degeneration,” Mol. Neurobiol., 38, No. 3, 253–269 (2008).

    Article  CAS  Google Scholar 

  5. V. Guadagni, E. Novelli, I. Piano, et al., “Pharmacological approaches to retinitis pigmentosa: a laboratory perspective,” Prog. Retin. Eye Res., 48, 62–81 (2015).

    Article  CAS  Google Scholar 

  6. J. L. Duncan, E. A. Pierce, A. M. Laster, et al., “Inherited retinal degenerations: current landscape and knowledge gaps,” Transl. Vis. Sci. Technol., 7, No. 4, 6–16 (2018).

    Article  Google Scholar 

  7. C. E. Keeler, “The Inheritance of a retinal abnormality in white mice,” Proc. Natl. Acad. Sci. USA, 10, 329–333 (1924)

    Article  CAS  Google Scholar 

  8. J. Han, A. Dinculescu, X. Dai, et al., “The history and role of naturally occurring mouse models with Pde6b mutations,” Mol. Vis., 19, 2579–2589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Bowes, T. Li, M. Danciger, et al., “Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase,” Nature, 347, 677–680 (1990).

    Article  CAS  Google Scholar 

  10. S. J. Pittler and W. Baehr, “Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse,” Proc. Natl. Acad. Sci. USA, 88, No. 19, 8322–8326 (1991).

    Article  CAS  Google Scholar 

  11. C. Bowes, T. Li, W. N. Frankel, et al., “Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase,” Proc. Natl. Acad. Sci. USA, 90, No. 7, 2955–2959 (1993).

    Article  CAS  Google Scholar 

  12. R. Gibson, E. L. Fletcher, A. J. Vingrys, et al., “Functional and neurochemical development in the normal and degenerating mouse retina,” J. Comp. Neurol., 521, No. 6, 1251–1267 (2013).

    Article  CAS  Google Scholar 

  13. L. D. Carter-Dawson, M. M. LaVail, and R. L. Sidman, “Differential effect of the rd mutation on rods and cones in the mouse retina,” Invest. Ophthalmol. Vis. Sci., 17, 489–498 (1978).

    CAS  PubMed  Google Scholar 

  14. K. M. Nishiguchi, L. S. Carvalho, M. Rizzi, et al., “Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179,” Nat. Commun., 6, No. 1, 1–10 (2015).

    Article  Google Scholar 

  15. N. S. Peachey, T. A. Ray, R. Florijn, et al., “GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness,” Am. J. Hum. Genet., 90, No. 2, 331–339 (2012).

    Article  CAS  Google Scholar 

  16. B. Chang, “Survey of the nob5 mutation in C3H substrains,” Mol. Vis., 21, 1101–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. E. Strettoi, “A survey of retinal remodeling,” Front. Cell. Neurosci., 9, 494 (2015).

    Article  Google Scholar 

  18. G. E. Truett, P. Heeger, R. L. Mynatt, et al., “Preparation of PCRquality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT),” Biotechniques, 29, No. 1, 52–54 (2000).

  19. E. L. Bearer, T. L. Falzone, X. Zhang, et al., “Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI),” Neuroimage, 37, S37–S46 (2007).

    Article  Google Scholar 

  20. G. Benchorin, M. A. Calton, M. O. Beaulieu, and D. Vollrath, “Assessment of murine retinal function by electroretinography,” Bio. Protoc., 7, No. 7, e2218 (2017).

  21. A. Yu. Rotov, L. A. Astakhova, V. S. Sitnikova, et al., “New experimental models of retinal degeneration for screening molecular photochromic ion channel blockers,” Acta Naturae, 10, No. 1, 75–84 (2018).

  22. F. Vinberg, A. V. Kolesnikov, and V. J. Kefalov, “Ex vivo ERG analysis of photoreceptors using an in vivo ERG system,” Vision Res., 101, 108–117 (2014).

    Article  Google Scholar 

  23. K. H. Kim, M. Puoris’haag, G. N. Maguluri, et al., “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis., 8, No. 1, 1–11 (2008).

    Article  Google Scholar 

  24. B. Chang, N. L. Hawes, R. E. Hurd, et al., “Retinal degeneration mutants in the mouse,” Vision Res., 42, No. 4, 517–525 (2002).

    Article  CAS  Google Scholar 

  25. M. Power, S. Das, K. Schutze, et al., “Cellular mechanisms of hereditary photoreceptor degeneration-focus on cGMP,” Prog. Retin. Eye Res., 74, 100772 (2020).

    Article  CAS  Google Scholar 

  26. L. Yue, J. D. Weiland, B. Roska, and M. S. Humayun, “Retinal stimulation strategies to restore vision: Fundamentals and systems,” Prog. Retin. Eye Res., 53, 21–47 (2016).

    Article  Google Scholar 

  27. C. K. Baker and J. G. Flannery, “Innovative optogenetic strategies for vision restoration,” Front. Cell. Neurosci., 12, 316 (2018).

    Article  CAS  Google Scholar 

  28. J. H. Stern, Y. Tian, J. Funderburgh, et al., “Regenerating eye tissues to preserve and restore vision,” Cell Stem Cell, 22, No. 6, 834–849 (2018).

  29. J. Balmer, R. Ji, T. A. Ray, et al., “Presence of the Gpr179nob5 allele in a C3H-derived transgenic mouse,” Mol. Vis., 19, 2615–2625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. T. G. Wensel, “Signal transducing membrane complexes of photoreceptor outer segments,” Vision Res., 48, No. 20, 2052–2061 (2008).

    Article  CAS  Google Scholar 

  31. O. Kutsyr, X. Sanchez-Saez, N. Martinez-Gil, et al., “Gradual increase in environmental light intensity induces oxidative stress and inflammation and accelerates retinal neurodegeneration,” Invest. Ophthalmol. Vis. Sci., 61, No. 10, 1 (2020).

  32. M. Hoon, H. Okawa, L. Della Santina, and R. O. Wong, “Functional architecture of the retina: development and disease,” Prog. Retin. Eye Res., 42, 44–84 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Rotov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 12, pp. 1496–1511, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goriachenkov, A.A., Rotov, A.Y. & Firsov, M.L. Developmental Dynamics of the Functional State of the Retina in Mice with Inherited Photoreceptor Degeneration. Neurosci Behav Physi 51, 807–815 (2021). https://doi.org/10.1007/s11055-021-01137-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01137-8

Keywords

Navigation