Skip to main content
Log in

Experimental Models of Cognitive Impairments in Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Cognitive impairments in schizophrenia are currently regarded as the third key group of symptoms, along with negative and productive psychopathological symptomatology. They are encountered in a majority of patients and determine the functional outcome of illness. This article presents a review of the literature on modeling of cognitive impairments in schizophrenia in animals. Pharmacological, ontogenetic, and genetic models are discussed, along with their mechanisms and characteristic manifestations, and methods of evaluating cognitive functions in rodents. There is now a multitude of methods for modeling individual cognitive impairments typical of schizophrenia patients in animals. These models are required for further development of psychopharmacology and studies of pathophysiological mechanisms, though none as yet allows the whole set and heterogenous structure of cognitive defi cit seen in patients to be reproduced. Particular attention is paid to ontogenetic models which can be used to study risk factors for the development of schizophrenia and early interventions in states posing high risks of developing psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Shmukler, Schizophrenia, GEOTAR-Media, Moscow (2017).

    Google Scholar 

  2. R. S. Keefe and P. D. Harvey, “Cognitive impairment in schizophrenia,” Handb. Exp. Pharmacol., 213, 11–37 (2012).

    Article  CAS  Google Scholar 

  3. N. Z. Al Dahhan, F. G. De Felice, and D. P. Munoz, “Potentials and pitfalls of cross-translational models of cognitive impairment,” Front. Behav. Neurosci., 13, 48 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. M. F. Green, K. H. Nuechterlein, J. M. Gold, et al., “Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria,” Biol. Psychiatry, 56, No. 5, 301–307 (2004).

    Article  PubMed  Google Scholar 

  5. J. W. Young, S. B. Powell, V. Risbrough, et al., “Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia,” Pharmacol. Ther., 122, No. 2, 150–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. Moore, M. A. Geyer, C. S. Carter, and D. M. Barch, “Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models,” Neurosci. Biobehav. Rev., 37, No. 9, Pt. B, 2087–2091 (2013).

  7. C. A. Jones, D. J. Watson, and K. C. Fone, “Animal models of schizophrenia,” Br. J. Pharmacol., 164, No. 4, 1162–1194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. K. Lipska and D. R. Weinberger, “To model a psychiatric disorder in animals: schizophrenia as a reality test,” Neuropsychopharmacology, 23, 223–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. N. L. Lazar, R. Neufeld, and D. P. Cain, “Contribution of non-primate animal models in understanding the etiology of schizophrenia,” J. Psychiatry Neurosci., 36, No. 4, 5–29 (2011).

    Article  Google Scholar 

  10. N. Z. Al Dahhan, F. G. De Felice, and D. P. Munoz, “Potentials and pitfalls of cross-translational models of cognitive impairment,” Front. Behav. Neurosci., 13, 48 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. A. H. Wong and S. A. Josselyn, “Caution when diagnosing your mouse with schizophrenia: The use and misuse of model animals for understanding psychiatric disorders,” Biol. Psychiatry, 79, No. 1, 32–38 (2016).

    Article  PubMed  Google Scholar 

  12. P. M. Callahan and A. V. Terry, Jr., “Attention,” Handb. Exp. Pharmacol., 228, 161–189 (2015).

    Article  PubMed  Google Scholar 

  13. J. W. Young, G. A. Light, H. M. Marston, et al., “The 5-choice continuous performance test: evidence for a translational test of vigilance for mice,” PLoS One, 4, No. 1, e4227 (2009).

  14. C. Lustig, R. Kozak, M. Sarter, et al., “CNTRICS fi nal animal model task selection: control of attention,” Neurosci. Biobehav. Rev., 37, No. 9, Pt. B, 2099–2110 (2013).

  15. N. Amitai and A. Markou, “Disruption of performance in the fi vechoice serial reaction time task induced by administration of N-methyl- D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia,” Biol. Psychiatry, 68, No. 1, 5–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Nikiforuk, “Assessment of cognitive functions in animal models of schizophrenia,” Pharmacol. Rep., 70, No. 4, 639–649 (2018).

    Article  PubMed  Google Scholar 

  17. P. A. Dudchenko, J. Talpos, J. Young, and M. G. Baxter, “Animal models of working memory: a review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia,” Neurosci. Biobehav. Rev., 37, No. 9, Pt. B, 2111–2124 (2013).

  18. G. Gilmour, A. Arguello, A. Bari, et al., “Measuring the construct of executive control in schizophrenia: defi ning and validating translational animal paradigms for discovery research,” Neurosci. Biobehav. Rev., 37, No. 9, Pt. B, 2125–2140 (2013).

  19. P. D. Goetghebeur and R. Dias, “The attentional set-shifting test paradigm in rats for the screening of novel pro-cognitive compounds with relevance for cognitive defi cits in schizophrenia,” Curr. Pharm. Des., 20, No. 31, 5060–5068 (2014).

    Article  CAS  Google Scholar 

  20. D. S. Tait, E. A. Chase, and V. J. Brown, “Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results,” Curr. Pharm. Des., 20, No. 31, 5046–5059 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. B. Grayson, M. Leger, C. Piercy, et al., “Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents,” Behav. Brain Res., 285, 176–193 (2015).

    Article  PubMed  Google Scholar 

  22. K. E. Ameen-Ali, A. Easton, and M. J. Eacott, “Moving beyond standard procedures to assess spontaneous recognition memory,” Neurosci. Biobehav. Rev., 53, 37–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. M. F. Green, W. P. Horan, and J. Lee, “Social cognition in schizophrenia,” Nat. Rev. Neurosci., 16, No. 10, 620–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. C. A. Wilson and J. I. Koenig, “Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia,” Eur. Neuropsychopharmacol., 24, No. 5, 759–773 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. M. Wohr, K. A. Engelhardt, D. Seffer, et al., “Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socioaffective signals,” Curr. Top. Behav. Neurosci., 30, 67–89 (2017).

    Article  PubMed  Google Scholar 

  26. P. Moser, “Evaluating negative-symptom-like behavioural changes in developmental models of schizophrenia,” Eur. Neuropsychopharmacol., 24, No. 5, 774–787 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. S. Kimoto, M. Makinodan, and T. Kishimoto, “Neurobiology and treatment of social cognition in schizophrenia: Bridging the bedbench gap,” Neurobiol. Dis., 131, 104315 (2019).

    Article  PubMed  Google Scholar 

  28. I. R. Winship, S. M. Dursun, G. B. Baker, et al., “An overview of animal models related to schizophrenia,” Can. J. Psychiatry, 64, No. 1, 5–17 (2019).

    Article  PubMed  Google Scholar 

  29. R. E. Featherstone, Z. Rizos, S. Kapur, and P. J. Fletcher, “A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory,” Behav. Brain Res., 189, 170–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. F. Sams-Dodd, “A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine,” Neuropsychopharmacology, 18, No. 4, 293–304 (1998).

  31. M. A. Geyer and B. A. Ellenbroek, “Animal behaviour models of the mechanisms underlying antipsychotic atypicality,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, 1071–1079 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. M. Wang, L. Pei, P. J. Fletcher, et al., “Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization,” Mol. Brain, 3, 25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. E. O. Kutcher, A. Yu. Egorov, N. A. Chernikova, and E. V. Filatova, “Modeling of experimental schizophrenia with Levodopa + Carbidopa,” Zh. Evolyuts. Biokhim. Fiziol., 49, No. 5, 352–356 (2013).

    Google Scholar 

  34. E. O. Kutcher, A. Yu. Egorov, and E. V. Filatova, “Effects of ethanol on social behavior and exploratory and movement activity in rats with an experimental model of schizophrenia,” Psikhich. Zdorov., 7, 16–23 (2019).

    Google Scholar 

  35. D. C. Javitt and S. R. Zukin, “Recent advances in the phencyclidine model of schizophrenia,” Am. J. Psychiatry, 148, No. 10, 1301–1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. A. Mouri, Y. Noda, T. Enomoto, and T. Nabeshima, “Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment,” Neurochem. Int., 51, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. N. Amitai, S. Semenova, and A. Markou, “Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats,” Psychopharmacology (Berl.), 193, 521–537 (2007).

    Article  CAS  Google Scholar 

  38. J. C. Neill, S. Barnes, S. Cook, et al., “Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism,” Pharmacol. Ther., 128, No. 3, 419–432 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. C. C. Tenn, S. Kapur, and P. J. Fletcher, “Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition,” Psychopharmacology (Berl.), 180, No. 2, 366–376 (2005).

    Article  CAS  Google Scholar 

  40. M. Takahashi, A. Kakita, T. Futamura, et al., “Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment,” J. Neurochem., 99, 770–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. J. C. Bartsch, B. H. Schott, and J. Behr, “Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review,” Pharmacopsychiatry, https://doi.org/10.1055/a-0960-9846.

  42. M. Hernandez-Frausto, C. Lopez-Rubalcava, and E. J. Galvan, “progressive alterations in synaptic transmission and plasticity of area CA1 precede the cognitive impairment associated with neonatal administration of MK-801,” Neuroscience, 404, 205–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. M. Faatehi, M. Basiri, A. Nezhadi, et al., “Early enriched environment prevents cognitive impairment in an animal model of schizophrenia induced by MK-801: Role of hippocampal BDNF,” Brain Res., 1711, 115–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. E. Kozela, M. Krawczyk, T. Kos, et al., “Cannabidiol improves cognitive impairment and reverses cortical transcriptional changes induced by ketamine, in schizophrenia- like model in rats,” Mol. Neurobiol., 57, No. 3, 1733–1747 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. L. Wang, A. Alachkar, N. Sanathara, et al., “A methionine-induced animal model of schizophrenia: face and predictive validity,” Int. J. Neuropsychopharmacol., 18, No. 12, pyv054 (2015).

  46. L. Tremolizzo, G. Carboni, W. B. Ruzicka, et al., “An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability,” Proc. Natl. Acad. Sci. USA, 99, 17095–17100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. F. Cattabeni and M. DiLuca, “Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol,” Physiol. Rev., 77, 199–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. J. Matricon, A. Bellon, H. Frieling, et al., “Neuropathological and reelin defi ciencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia,” PLoS One, 5, e10291 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. H. Moore, J. D. Jentsch, M. Ghajarnia, et al., “A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia,” Biol. Psychiatry, 60, 253–264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. F. Hazane, M. O. Krebs, T. M. Jay, and G. Le Pen, “Behavioral perturbations after prenatal neurogenesis disturbance in female rat,” Neurotox. Res., 15, No. 4, 311–320 (2009).

    Article  PubMed  Google Scholar 

  51. A. Potasiewicz, M. Holuj, E. Litwa, et al., “Social dysfunction in the neurodevelopmental model of schizophrenia in male and female rats: Behavioural and biochemical studies,” Neuropharmacology, 170, 108040 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. L. Zuckerman, M. Rehavi, R. Nachman, and I. Weiner, “Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia,” Neuropsychopharmacology, 28, No. 10, 1778–1789 (2003).

  53. L. Zuckerman and I. Weiner, “Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring,” J. Psychiatr. Res., 39, No. 3, 311–323 (2005).

    Article  PubMed  Google Scholar 

  54. J. G. Howland, B. N. Cazakoff, and Y. Zhang, “Altered object-inplace recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy,” Neuroscience, 201, 184–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. C. J. Machado, A. M. Whitaker, S. E. Smith, et al., “Maternal immune activation in nonhuman primates alters social attention in juvenile offspring,” Biol. Psychiatry, 77, No. 9, 823–832 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. U. Meyer, “Prenatal poly (I:C) exposure and other developmental immune activation models in rodent systems,” Biol. Psychiatry, 75, 307–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Y. Zhang, B. N. Cazakoff, C. A. Thai, and J. G. Howland, “Prenatal exposure to a viral mimetic alters behavioural fl exibility in male, but not female, rats,” Neuropharmacology, 62, No. 3, 1299–1307 (2012).

  58. M. Careaga, T. Murai, and M. D. Bauman, “Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates,” Biol. Psychiatry, 81, No. 5, 391–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. S. Giovanoli, L. Weber, and U. Meyer, “Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation,” Brain Behav. Immun., 40, 48–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. J. W. Paylor, B. R. Lins, Q. Greba, et al., “Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation,” Sci. Rep., 6, 375–380 (2016).

    Article  CAS  Google Scholar 

  61. P. Steullet, J. H. Cabungcal, J. Coyle, et al., “Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia,” Mol. Psychiatry, 22, No. 7, 936–943 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Shin Yim, A. Park, J. Berrios, et al., “Reversing behavioural abnormalities in mice exposed to maternal infl ammation,” Nature, 549, No. 7673, 482–487 (2017).

  63. K. C. Fone and M. V. Porkess, “Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders,” Neurosci. Biobehav. Rev., 32, No. 6, 1087–1102 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. C. A. Marsden, M. V. King, and K. C. Fone, “Infl uence of social isolation in the rat on serotonergic function and memory-relevance to models of schizophrenia and the role of 5-HT6 receptors,” Neuropharmacology, 61, No. 3, 400–407 (2011).

  65. M. I. Schubert, M. V. Porkess, N. Dashdorj, et al., “Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats,” Neuroscience, 159, No. 1, 21–30 (2009).

  66. A. B. Silva-Gomez, D. Rojas, I. Juarez, and G. Flores, “Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats,” Brain Res., 983, No. 1–2, 128–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. C. Bloomfi eld, S. J. French, D. N. Jones, et al., “Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats,” Synapse, 62, No. 8, 628–631 (2008).

  68. C. Toua, L. Brand, M. Moller, et al., “The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats,” Neuroscience, 165, No. 2, 492–499 (2010).

  69. M. N. Quan, Y. T. Tian, K. H. Xu, et al., “Post weaning social isolation infl uences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats,” Neuro science, 169, No. 1, 214–222 (2010).

  70. I. C. Weiss, J. Feldon, and A. M. Domeney, “Isolation rearing-induced disruption of prepulse inhibition: further evidence for fragility of the response,” Behav. Pharmacol., 10, No. 2, 139–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. N. Li, X. Wu, and L. Li, “Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats,” Behav. Pharmacol., 18, No. 2, 135–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. K. C. F. Fone, D. J. G. Watson, R. I. Billiras, et al., “Comparative pro-cognitive and neurochemical profiles of glycine modulatory site agonists and glycine reuptake inhibitors in the rat: potential relevance to cognitive dysfunction and its management,” Mol. Neurobiol., https://doi.org/10.1007/s12035-020-01875-9.

  73. K. Y. Tseng, R. A. Chambers, and B. K. Lipska, “The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia,” Behav. Brain Res., 204, 295–305 (2009).

    Article  PubMed  Google Scholar 

  74. B. K. Lipska, “Using animal models to test a neurodevelopmental hypothesis of schizophrenia,” J. Psychiatry Neurosci., 29, 282–286 (2004).

    PubMed  PubMed Central  Google Scholar 

  75. A. M. Brady, R. D. Saul, and M. K. Wiest, “Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia,” Neuropharmacology, 59, 605–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. J. P. Marquis, S. Goulet, and F. Y. Dore, “Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats,” Neurobiol. Learn. Mem., 90, 339–346 (2008).

    Article  PubMed  Google Scholar 

  77. M. T. Tse, P. T. Piantadosi, and S. B. Floresco, “Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research,” Biol. Psychiatry, 77, No. 11, 929–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. M. S. Farrell, T. Werge, P. Sklar, et al., “Evaluating historical candidate genes for schizophrenia,” Mol. Psychiatry, 20, No. 5, 555–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schizophrenia Working Group of the Psychiatric Genomics Consortium, “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, No. 7510, 421–427 (2014).

  80. H. Jaaro-Peled, “Gene models of schizophrenia: DISC1 mouse models,” Prog. Brain Res., 179, 75–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. D. Krueger, J. Howell, B. Hebert, et al., “Assessment of cognitive function in the heterozygous reeler mouse,” Psychopharmacology (Berl.), 189, 95–104 (2006).

    Article  CAS  Google Scholar 

  82. C. M. Grimm, S. Aksamaz, S. Schulz, et al., “Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model of ventral hippocampal hyperactivity,” Transl. Psychiatry, 8, No. 1, 212 (2018).

  83. A. Mukherjee, F. Carvalho, S. Eliez, and P. Caroni, “Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model,” Cell, 178, No. 6, 1387–1402.e14 (2019).

  84. L. B. Glenthoj, C. Hjorthoj, T. D. Kristensen, et al., “The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review,” NPJ Schizophr., 3, 1–7 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dorofeikova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 11, pp. 1325–1339, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeikova, M.V., Kutcher, E.O., Petrova, N.N. et al. Experimental Models of Cognitive Impairments in Schizophrenia. Neurosci Behav Physi 51, 765–773 (2021). https://doi.org/10.1007/s11055-021-01133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01133-y

Keywords

Navigation