Skip to main content
Log in

Time as a Measure of Consciousness. Subjective Time in Waking and Different Sleep Phases

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review presents results from studies addressing the problem of the experience of time in waking and sleep. The adaptive value of the sensation of time and its role in cognitive processes of humans are discussed. Data on the currently known physiological mechanisms underlying the perception of temporal sequences and the evaluation and estimation of time intervals are presented. Similarities and differences in the perception of time in waking and different sleep phases are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Block, P. A. Hancock, and D. Zakay, “How cognitive load affects duration judgments: A meta-analytic review,” Acta Psychol. (Amst.), 134, No. 3, 330–343 (2010), https://doi.org/10.1016/j.actpsy.2010.03.006.

    Article  Google Scholar 

  2. D. Zakay and R. A. Block, “Temporal cognition,” Curr. Dir. Psychol. Sci., 6, No. 1, 1216 (1997), 10.1111/1467-8721.ep11512604.

  3. Z. G. Cai and R. Wang, “Numerical magnitude affects temporal memories but not time encoding,” PLoS One, 9, No. 1, e83159 (2014), https://doi.org/10.1371/journal.pone.0083159.

  4. A. Y. C. Chang, O. J. L. Tzeng, D. L. Hung, and D. H. Wu, “Big time is not always long,” Psychol. Sci., 22, No. 12, 1567–1573 (2011), https://doi.org/10.1177/0956797611418837.

    Article  PubMed  Google Scholar 

  5. J. H. Wearden, H. Edwards, M. Fakhri, and A. Percival, “Why ‘sounds are judged longer than light’: application of a model of the internal clock in humans,” Q. J. Exp. Psychol. B, 51, No. 2, 97–120 (1998), https://doi.org/10.1080/713932672.

    Article  CAS  PubMed  Google Scholar 

  6. N. E. Sviderskaya, “In search of neurophysiological criteria for altered states of consciousness,” Zh. Vyssh. Nerv. Deyat., 52, No. 5, 517–530 (2002).

    Google Scholar 

  7. J. I. Lake, K. S. LaBar, and W. H. Meck, “Emotional modulation of interval timing and time perception,” Neurosci. Biobehav. Rev., 64, 403–420 (2016), https://doi.org/10.1016/j.neubiorev.2016.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. V. P. Danilin and L. P. Latash, “The subjective estimation of the duration of sleep periods: the value of real time and representation of different EEG stages,” Zh. Vyssh. Nerv. Deyat., 29, No. 3, 502–509 (1979).

    CAS  Google Scholar 

  9. C. S. Fichten, L. Creti, R. Amsel, et al., “Time estimation in good and poor sleepers,” J. Behav. Med., 28, No. 6, 537–553 (2005), https://doi.org/10.1007/s10865-005-9021-8.

    Article  PubMed  Google Scholar 

  10. P. Reddy, W. A. Zehring, D. A. Wheeler, et al., “Molecular analysis of the period locus in Drosophila melanogaster and identifi cation of a transcript involved in biological rhythms,” Cell, 38, No. 3, 701–710 (1984), 10.1016/0092-8674(84)90265-4.

  11. C. S. Colwell, “Linking neural activity and molecular oscillations in the SCN,” Nat. Rev. Neurosci., 12, No. 10, 553–569 (2011), https://doi.org/10.1038/nrn3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. A. Lewis, R. C. Miall, S. Daan, and A. Kacelnik, “Interval timing in mice does not rely upon the circadian pacemaker,” Neurosci. Lett., 348, No. 3, 131–134 (2003), https://doi.org/10.1016/S0304-3940(03)00521-4.

    Article  CAS  PubMed  Google Scholar 

  13. J. Gibbon, R. M. Church, and W. H. Meck, “Scalar timing in memory,” Ann. N. Y. Acad. Sci., 423, No. 1, 52–77 (1984), https://doi.org/10.1111/j.1749-6632.1984.tb23417.x.

    Article  CAS  PubMed  Google Scholar 

  14. M. Treisman, “Temporal discrimination and the indifference interval: Implications for a model of the ‘internal clock’,” Psychol. Monogr. Gen. Appl., 77, No. 13, 1–31 (1963), https://doi.org/10.1037/h0093864.

    Article  CAS  Google Scholar 

  15. P. Fraisse, “Perception and estimation of time,” Annu. Rev. Psychol., 35, No. 1, 1–36 (1984), https://doi.org/10.1146/annurev.psych.35.1.1.

    Article  CAS  PubMed  Google Scholar 

  16. V. van Wassenhove, “Minding time in an amodal representational space,” Phil. Trans. R. Soc. B. Biol. Sci., 364, No. 1525, 1815–1830 (2009), https://doi.org/10.1098/rstb.2009.0023.

    Article  Google Scholar 

  17. D. V. Buonomano and W. Maass, “State-dependent computations: spatiotemporal processing in cortical networks,” Nat. Rev. Neurosci., 10, No. 2, 113–125 (2009), https://doi.org/10.1038/nrn2558.

    Article  CAS  PubMed  Google Scholar 

  18. D. M. Eagleman and V. Pariyadath, “Is subjective duration a signature of coding effi ciency?” Phil. Trans. R. Soc. B. Biol. Sci., 364, No. 1525, 1841–1851 (2009), https://doi.org/10.1098/rstb.2009.0026.

    Article  Google Scholar 

  19. R. Buckhout, P. Fox, and M. Rabinowitz, “Estimating the duration of an earthquake: Some shaky fi eld observations,” Bull. Psychon. Soc., 27, No. 4, 375–378 (1989), https://doi.org/10.3758/BF03334633.

    Article  Google Scholar 

  20. R. Buckley, “Slow time perception can be learned,” Front. Psychol., 5, 209 (2014), https://doi.org/10.3389/fpsyg.2014.00209.

    Article  PubMed  PubMed Central  Google Scholar 

  21. L. A. Campbell and R. A. Bryant, “How time fl ies: A study of novice skydivers,” Behav. Res. Ther., 45, No. 6, 1389–1392 (2007), https://doi.org/10.1016/j.brat.2006.05.011.

    Article  PubMed  Google Scholar 

  22. C. Stetson, M. P. Fiesta, and D. M. Eagleman, “Does time really slow down during a frightening event?” PLoS One, 2, No. 12, e1295 (2007), https://doi.org/10.1371/journal.pone.0001295.

  23. V. Arstila, “Time slows down during accidents,” Front. Psychol., 3, 196 (2012), https://doi.org/10.3389/fpsyg.2012.00196.

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. Cahill and J. L. McGaugh, “Modulation of memory storage,” Curr. Opin. Neurobiol., 6, No. 2, 237–242 (1996), https://doi.org/10.1016/S0959-4388(96)80078-X.

    Article  CAS  PubMed  Google Scholar 

  25. D. L. Schacter, “Illusory memories: A cognitive neuroscience analysis,” Proc. Natl. Acad. Sci. USA, 93, No. 24, 13527–13533 (1996), https://doi.org/10.1073/pnas.93.24.13527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. W. J. Matthews and W. H. Meck, “Temporal cognition: Connecting subjective time to perception, attention, and memory,” Psychol. Bull., 142, No. 8, 865–907 (2016), https://doi.org/10.1037/bul0000045.

    Article  PubMed  Google Scholar 

  27. W. James, “The perception of time,” in: The Principles of Psychology, Henry Holt and Company, New York (1890).

  28. C. Hammond, Unlocking the Mysteries of Time Perception, Harper Perennial, New York (2013).

    Google Scholar 

  29. J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map, Oxford University Press, Oxford (1978).

    Google Scholar 

  30. C. J. MacDonald, K. Q. Lepage, U. T. Eden, and H. Eichenbaum, “Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events,” Neuron, 71, No. 4, 737–749 (2011), https://doi.org/10.1016/j.neuron.2011.07.012.

  31. B. J. Kraus, R. J. Robinson, J. A. White, et al., “Hippocampal ‘time cells’: time versus path integration,” Neuron, 78, No. 6, 1090–1101 (2013), https://doi.org/10.1016/j.neuron.2013.04.015.

  32. H. Eichenbaum, “Time cells in the hippocampus: a new dimension for mapping memories,” Nat. Rev. Neurosci., 15, No. 11, 732–744 (2014), https://doi.org/10.1038/nrn3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. W. Howard and H. Eichenbaum, “The hippocampus, time, and memory across scales,” J. Exp. Psychol. Gen., 142, No. 4, 1211–1230 (2013), https://doi.org/10.1037/a0033621.

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. R. Mehta, M. C. Quirk, and M. A. Wilson, “Experience-dependent asymmetric shape of hippocampal receptive fi elds,” Neuron, 25, No. 3, 707–715 (2000), https://doi.org/10.1016/S0896-6273(00)81072-7.

  35. J. Cheng and D. Ji, “Rigid fi ring sequences undermine spatial memory codes in a neurodegenerative mouse model,” eLife, 2, e00647 (2013), https://doi.org/10.7554/eLife.00647.

  36. G. V. Wallenstein, M. E. Hasselmo, and H. Eichenbaum, “The hippocampus as an associator of discontiguous events,” Trends Neurosci., 21, No. 8, 317–323 (1998), https://doi.org/10.1016/S0166-2236(9701220-4.

    Article  CAS  PubMed  Google Scholar 

  37. D. Lloyd, “Neural correlates of temporality: Default mode variability and temporal awareness,” Conscious. Cogn., 21, No. 2, 695–703 (2012), https://doi.org/10.1016/j.concog.2011.02.016.

    Article  PubMed  Google Scholar 

  38. A. Seth, “Explanatory correlates of consciousness: theoretical and computational challenges,” Cognit. Comput., 1, No. 1, 50–63 (2009), https://doi.org/10.1007/s12559-009-9007-x.

    Article  Google Scholar 

  39. E. Husserl, Zur Phänomenologie des Inneren Zeitbewusstseins (1893–1917), R. Boehm (ed.), Springer Netherlands, Dordrecht (1969).

  40. K. Friston, “A theory of cortical responses,” Phil. Trans. R. Soc. B. Biol. Sci., 360, No. 1456, 815–836 (2005), https://doi.org/10.1098/rstb.2005.1622.

    Article  Google Scholar 

  41. M. Atienza, J. L. Cantero, and E. Dominguez-Marin, “Mismatch negativity (MMN), an objective measure of sensory memory and long-lasting memories during sleep,” Int. J. Psychophysiol., 46, No. 3, 215–225 (2002), https://doi.org/10.1016/S0167-8760(02)00113-7.

    Article  PubMed  Google Scholar 

  42. L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,” Nat. Neurosci., 3, S11, 1178–1183 (2000), https://doi.org/10.1038/81453.

    Article  CAS  PubMed  Google Scholar 

  43. P. C. W. Davies, About Time: Einstein’s Unfi nished Revolution, Simon & Schuster, New York (1996).

    Google Scholar 

  44. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton (2009).

    Book  Google Scholar 

  45. N. McKinnon, “Presentism and consciousness,” Australas. J. Philos., 81, No. 3, 305–323 (2003), https://doi.org/10.1093/ajp/jag301.

    Article  Google Scholar 

  46. B. S. Atal and S. L. Hanauer, “Speech analysis and synthesis by linear prediction of the speech wave,” J. Acoust. Soc. Am., 50, No. 2B, 637–655 (1971), https://doi.org/10.1121/1.1912679.

    Article  CAS  PubMed  Google Scholar 

  47. S. L. Denham and I. Winkler, “Predictive coding in auditory perception: challenges and unresolved questions,” Eur. J. Neurosci., 1–10 (2017), 10.1111/ejn.13802.

  48. E. Brunswik, Perception and the Representative Design of Psychological Experiments, University of California Press, Berkeley (1956), 2nd ed.

  49. I. P. Jääskeläinen, J. Ahveninen, G. Bonmassar, et al., “Human posterior auditory cortex gates novel sounds to consciousness,” Proc. Natl. Acad. Sci. USA, 101, No. 17, 6809–6814 (2004), https://doi.org/10.1073/pnas.0303760101.

    Article  PubMed  PubMed Central  Google Scholar 

  50. P. May, H. Tiitinen, R. J. Ilmoniemi, et al., “Frequency change detection in human auditory cortex,” J. Comput. Neurosci., 6, No. 2, 99–120 (1999), https://doi.org/10.1023/a:1008896417606.

    Article  CAS  PubMed  Google Scholar 

  51. J. Polich, “Updating P300: An integrative theory of P3a and P3b,” Clin. Neurophysiol., 118, No. 10, 2128–2148 (2007), https://doi.org/10.1016/j.clinph.2007.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  52. R. Näätänen, P. Paavilainen, T. Rinne, and K. Alho, “The mismatch negativity (MMN) in basic research of central auditory processing: A review,” Clin. Neurophysiol., 118, No. 12, 2544–2590 (2007), https://doi.org/10.1016/j.clinph.2007.04.026.

    Article  PubMed  Google Scholar 

  53. I. Winkler and I. Czigler, “Mismatch negativity,” Neuroreport, 9, No. 17,3809–3813(1998), https://doi.org/10.1097/00001756-199812010-00008.

  54. N. Ulanovsky, L. Las, and I. Nelken, “Processing of low-probability sounds by cortical neurons,” Nat. Neurosci., 6, No. 4, 391–398 (2003), https://doi.org/10.1038/nn1032.

    Article  CAS  PubMed  Google Scholar 

  55. J. R. King, F. Faugeras, A. Gramfort, et al., “Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness,” Neuroimage, 83, 726–738 (2013), https://doi.org/10.1016/j.neuroimage.2013.07.013.

    Article  CAS  PubMed  Google Scholar 

  56. D. Morlet and C. Fischer, “MMN and novelty P3 in coma and other altered states of consciousness: A review,” Brain Topogr., 27, No. 4, 467–479 (2014), https://doi.org/10.1007/s10548-013-0335-5.

    Article  PubMed  Google Scholar 

  57. R. Johnson, A. Pfefferbaum, and B. S. Kopell, “P300 and long-term memory: latency predicts recognition performance,” Psychophysiology, 22, No. 5, 497–507 (1985), https://doi.org/10.1111/j.1469-8986.1985.tb01639.x.

  58. K. Maurer, P. Riederer, H. Heinsen, and H. Beckmann, “Altered P300 topography due to functional and structural disturbances in the limbic system in dementia and psychoses and to pharmacological conditions,” Psychiatry Res., 29, No. 3, 391–393 (1989), 10.1016/0165-1781(89)90099-1.

  59. L. J. Ozen, R. J. Itier, F. F. Preston, and M. A. Fernandes, “Long-term working memory defi cits after concussion: Electrophysiological evidence,” Brain Inj., 27, No. 11, 1244–1255 (2013), https://doi.org/10.3109/02699052.2013.804207.

    Article  PubMed  Google Scholar 

  60. Y. A. Voronkova, I. S. Lebedeva, L. V. Gubsky, et al., “Subcortical and limbic structures and P300 in schizophrenia,” Human Physiol., 31, No. 2, 137–141 (2005), https://doi.org/10.1007/s10747-005-0022-3.

    Article  Google Scholar 

  61. A. Del Cul, S. Baillet, and S. Dehaene, “Brain dynamics underlying the nonlinear threshold for access to consciousness,” PLoS Biol., 5, No. 10, e260 (2007), 10.1371/journal.pbio.0050260.

  62. C. Kranczioch, S. Debener, A. Maye, and A. K. Engel, “Temporal dynamics of access to consciousness in the attentional blink,” Neuroimage, 37, No. 3, 947–955 (2007), https://doi.org/10.1016/j.neuroimage.2007.05.044.

  63. B. Ernst, S. M. Reichard, R. F. Riepl, et al., “The P3 and the subjective experience of time,” Neuropsychologia, 103, 12–19 (2017), https://doi.org/10.1016/j.neuropsychologia.2017.06.033.

    Article  PubMed  Google Scholar 

  64. G. Aston-Jones, J. Rajkowski, P. Kubiak, and T. Alexinsky, “Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task,” J. Neurosci., 14, No. 7, 4467–4480 (1994), https://doi.org/10.1523/JNEUROSCI.14-07-04467.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Puglisi-Allegra and R. Ventura, “Prefrontal/accumbal catecholamine system processes high motivational salience,” Front. Behav. Neurosci., 6, 3 (2012), https://doi.org/10.3389/fnbeh.2012.00031.

    Article  Google Scholar 

  66. D. V. Buonomano, “Decoding temporal information: a model based on short-term synaptic plasticity,” J. Neurosci., 20, No. 3, 1129–1141 (2000), https://doi.org/10.1523/JNEUROSCI.20-03-01129.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. R. S. Zucker, “Short-term synaptic plasticity,” Annu. Rev. Neurosci., 12, No. 1, 13–31 (1989), https://doi.org/10.1146/annurev.ne.12.030189.000305.

    Article  CAS  PubMed  Google Scholar 

  68. R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annu. Rev. Physiol., 64, No. 1, 355–405 (2002), https://doi.org/10.1146/annurev.physiol.64.092501.114547.

    Article  CAS  PubMed  Google Scholar 

  69. J. Antrobus, “REM and NREM sleep reports: Comparison of word frequencies by cognitive classes,” Psychophysiology, 20, No. 5, 562–568 (1983), https://doi.org/10.1111/j.1469-8986.1983.tb03015.x.

  70. C. Cipolli, M. Ferrara, L. De Gennaro, and G. Plazzi, “Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis,” Sleep Med. Rev., 35, 8–20 (2017), https://doi.org/10.1016/j.smrv.2016.07.005.

    Article  PubMed  Google Scholar 

  71. J. A. Hobson, E. F. Pace-Schott, and R. Stickgold, “Dreaming and the brain: Toward a cognitive neuroscience of conscious states,” Behav. Brain Sci., 23, No. 6, 793–842 (2000), https://doi.org/10.1017/S0140525X00003976.

    Article  CAS  PubMed  Google Scholar 

  72. S. Freud, The Interpretation of Dreams, J. Strachey (ed.), Basic Books A Member of the Perseus Books Group, New York (2010).

  73. H. Nunberg and E. Federn, Minutes of the Vienna Psychoanalytic, Vol. 3, 1910–1911, International Universities Press, Inc., New York (1974).

  74. H. Ikeda and M. Hayashi., “Longitudinal study of self-awakening and sleep/wake habits in adolescents,” Nat. Sci. Sleep, 4, 103 (2012), https://doi.org/10.2147/NSS.S33861.

  75. P. Lavie, “Ultradian rhythms in alertness – A pupillometric study,” Biol. Psychol., 9, No. 1, 49–62 (1979), 10.1016/0301-0511(79)90022-X.

  76. H. Zepelin, “Self-awakening and the sleep cycle,” Psychophysiology, 4, No. 3, 370 (1968).

  77. J.-M. Edeline, Y. Manunta, and E. Hennevin, “Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive fi eld size,” J. Neurophysiol., 84, No. 2, 934–952 (2000), https://doi.org/10.1152/jn.2000.84.2.934.

    Article  CAS  PubMed  Google Scholar 

  78. M. Sabri and K. B. Campbell, “The effects of digital fi ltering on mismatch negativity in wakefulness and slow-wave sleep,” J. Sleep Res., 11, No. 2, 123–127 (2002), https://doi.org/10.1046/j.1365-2869.2002.00292.x.

    Article  PubMed  Google Scholar 

  79. T. Andrillon and S. Kouider, “Implicit memory for words heard during sleep,” Neurosci. Conscious., 2016, No. 1, niw014 (2016), 10.1093/nc/niw014.

  80. A. Arzi, L. Shedlesky, M. Ben-Shaul, et al., “Humans can learn new information during sleep,” Nat. Neurosci., 15, No. 10, 1460–1465 (2012), https://doi.org/10.1038/nn.3193.

    Article  CAS  PubMed  Google Scholar 

  81. C. W. Simon and W. H. Emmons, “Responses to material presented during various levels of sleep,” J. Exp. Psychol., 51, No. 2, 89–97 (1956), https://doi.org/10.1037/h0043637.

    Article  CAS  PubMed  Google Scholar 

  82. J. M. Wood, R. R. Bootzin, J. F. Kihlstrom, and D. L. Schacter, “Implicit and explicit memory for verbal information presented during sleep,” Psychol. Sci., 3, No. 4, 236–240 (1992), 10.1111/j.1467–9280.1992.tb00035.x.

  83. V. M. Vasil’eva and M. V. Slavutskaya, “A conditioned refl ex to time in different stages of nocturnal sleep in humans,” Zh. Vyssh. Nerv. Deyat., 24, No. 1, 6–15..

  84. T. D. Borkovec, T. W. Lane, and P. H. VanOot, “Phenomenology of sleep among insomniacs and good sleepers: Wakefulness experience when cortically asleep,” J. Abnorm. Psychol., 90, No. 6, 607–609 (1981), 10.1037/0021-843X.90.6.607.

  85. S. Aritake-Okada, S. Higuchi, H. Suzuki, et al., “Diurnal fl uctuations in subjective sleep time in humans,” Neurosci. Res., 68, No. 3, 225–231 (2010), https://doi.org/10.1016/j.neures.2010.07.2040.

    Article  PubMed  Google Scholar 

  86. S. Aritake, M. Uchiyama, H. Tagaya, et al., “Time estimation during nocturnal sleep in human subjects,” Neurosci. Res., 49, No. 4, 387– 393 (2004), https://doi.org/10.1016/j.neures.2004.04.006.

    Article  PubMed  Google Scholar 

  87. P. Hauri and E. Olmstead. “What is the moment of sleep onset for insomniacs?” Sleep, 6, No. 1, 10–15 (1983), https://doi.org/10.1093/sleep/6.1.10.

    Article  Google Scholar 

  88. V. P. Danilin and L. P. Latash, “Subjective estimation of the duration and periods of nocturnal sleep during waking from different stages, phases, and cycles,” Dokl. Akad. Nauk. SSSR, 204, No. 3, 748–751 (1972).

    CAS  PubMed  Google Scholar 

  89. L. P. Latash and V. P. Danilin, “Subjective estimation of the duration of time periods in night sleep,” Nat. New Biol., 236, No. 64, 94–95 (1972), https://doi.org/10.1038/newbio236094a0.

    Article  CAS  PubMed  Google Scholar 

  90. L. de Vivo, M. Bellesi, W. Marshall, et al., “Ultrastructural evidence for synaptic scaling across the wake/sleep cycle,” Science, 355, No. 6324, 507–510 (2017), https://doi.org/10.1126/science.aah5982.

  91. G. H. Diering, R. S. Nirujogi, R. H. Roth, et al., “Homer1a drives homeostatic scaling-down of excitatory synapses during sleep,” Science, 355, No. 6324, 511–515 (2017), https://doi.org/10.1126/science.aai8355.

  92. G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Med. Rev., 10, No. 1, 49–62 (2006), https://doi.org/10.1016/j.smrv.2005.05.002.

    Article  PubMed  Google Scholar 

  93. H. Miyawaki and K. Diba, “Regulation of hippocampal fi ring by network oscillations during sleep,” Curr. Biol., 26, No. 7, 893–902 (2016), https://doi.org/10.1016/j.cub.2016.02.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. A. D. Grosmark, K. Mizuseki, E. Pastalkova, et al., “REM sleep reorganizes hippocampal excitability,” Neuron, 75, No. 6, 1001–1007 (2012), https://doi.org/10.1016/j.neuron.2012.08.015.

  95. M. Langella, L. Colarieti, M. Ambrosini, and A. Giuditta, “The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and nonlearning rats,” Physiol. Behav., 51, No. 2, 227–238 (1992), https://doi.org/10.1016/0031-9384(92) 90135-O.

  96. L. M. Trotti, “Waking up is the hardest thing in do all day: Sleep inertia and sleep drunkenness,” Sleep Med. Rev., 35, 76–84 (2017), https://doi.org/10.1016/j.smrv.2016.08.005.

    Article  PubMed  Google Scholar 

  97. S. Aritake-Okada, M. Uchiyama, H. Suzuki, et al., “Time estimation during sleep relates to the amount of slow wave sleep in humans,” Neurosci. Res., 63, No. 2, 115–121 (2009), https://doi.org/10.1016/j.neures.2008.11.001.

    Article  PubMed  Google Scholar 

  98. M. Wittmann, “The inner sense of time: how the brain creates a representation of duration,” Nat. Rev. Neurosci., 14, No. 3, 217–223 (2013), https://doi.org/10.1038/nrn3452.

    Article  CAS  PubMed  Google Scholar 

  99. W. H. Moorcroft, K. H. Kayser, and A. J. Griggs, “Subjective and objective confi rmation of the ability to self-awaken at a self-predetermined time without using external means,” Sleep, 20, No. 1, 40–45 (1997), https://doi.org/10.1093/sleep/20.1.40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Ukraintseva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 9, Iss. 2, Insomnia, pp. 13–21, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukraintseva, Y.V., Liaukovich, K.M. & Shilov, M.O. Time as a Measure of Consciousness. Subjective Time in Waking and Different Sleep Phases. Neurosci Behav Physi 51, 695–703 (2021). https://doi.org/10.1007/s11055-021-01123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01123-0

Keywords

Navigation