Skip to main content
Log in

Long-Term Changes in Spontaneous Behavior and c-Fos Expression in the Brain in Mice in the Resting State in a Model of Post-Traumatic Stress Disorder

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The development of post-traumatic stress disorder (PTSD) in humans includes a number of symptoms, the main being intrusive memories of the trauma, psychological and physiological hyperreactivity on reminding of the trauma, and increased anxiety, and specific memory impairments. Current models of PTSD in animals address the last three of these symptoms but do not provide for study of spontaneously arising intrusive memories or their neural basis. The study reported here uses contemporary methods for continuous monitoring of behavior and showed that the development of PTSD in mice was accompanied by specific changes in spontaneous behavior in their home cages. These changes were long-lasting and included decreased exploratory activity and elevated anxiety. Thus, we showed that mice display the behavioral manifestations of human-typical spontaneously arising PTSD symptoms which in humans are associated with intrusive memories of the trauma. In addition, studies of neuron electrical activity-dependent expression of transcription factor c-Fos showed that the brains of mice with PTSD, even when the animal was at rest and not receiving external reminders of the trauma experienced, showed increased spontaneous activity in the cingulate and retrosplenial cortex, amygdala, thalamus, and periaqueductal gray matter. Thus, our studies demonstrated the spontaneous manifestations of PTSD in a mouse model at both the behavioral and neural levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamec, R. E. and Shallow, T., “Lasting effects on rodent anxiety of a single exposure to a cat,” Physiol. Behav., 54, 101–109 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Barth, A. L., Gerkin, R. C., and Dean, K. L., “Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse,” J. Neurosci., 24, No. 29, 6466–6475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belzung, C. and Griebel, G., “Measuring normal and pathological anxiety-like behaviour in mice: a review,” Behav. Brain Res., 125, 141–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Berardi, A., Trezza, V., Palmery, M., et al., “An updated animal model capturing both the cognitive and emotional features of post-traumatic stress disorder (PTSD),” Front. Behav. Neurosci., 8, 142 (2014), eCollection.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewin, C. R., “Memory and forgetting,” Curr. Psychiatry Rep., 20, No. 10, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, V. M., LaBar, K. S., Haswell, C. C., et al., “Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder,” Neuropsychopharmacology, 39, No. 2, 351–359 (2014).

    Article  PubMed  Google Scholar 

  • Clausen, A. N., Francisco, A. J., Thelen, J., et al., “PTSD and cognitive symptoms relate to inhibition-related prefrontal activation and functional connectivity,” Depress. Anxiety, 34, No. 5, 427–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, H., Kozlovsky, N., Alona, C., et al., “Animal model for PTSD: from clinical concept to translational research,” Neuropharmacology, 62, 715–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Dahlhoff, M., Siegmund, A., Golub, Y., et al., “AKT/GSK-3beta/beta-catenin signalling within hippocampus and amygdala reflects genetically determined differences in posttraumatic stress disorder like symptoms,” Neuroscience, 169, 1216–1226 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Della Valle, R., Mohammadmirzaei, N., and Knox, D., “Single prolonged stress alters neural activation in the periacqueductal gray and midline thalamic nuclei during emotional learning and memory,” Learn. Mem., 26, No. 10, 403–411 (2019).

    Article  CAS  Google Scholar 

  • Falconer, E., Allen, A., Felmingham, K. L., et al., “Inhibitory neural activity predicts response to cognitive-behavioral therapy for posttraumatic stress disorder,” J. Clin. Psychiatry, 74, No. 9, 895–901 (2013).

    Article  PubMed  Google Scholar 

  • Fenster, R. J., Lebois, L. A. M., Ressler, K. J., and Suh, J., “Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man,” Nat. Rev. Neurosci., 19, No. 9, 535–551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin, K. B. J. and Paxinos, G., The Mouse Brain in Stereotaxic Coordinates, Academic Press, New York (2007), 3rd ed.

  • Gvozdanovic, G. A., Stampfli, P., Seifritz, E., and Rasch, B., “Neural correlates of experimental trauma memory retrieval,” Hum. Brain Mapp., 38, No. 7, 3592–3602 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Harricharan, S., Rabellino, D., Frewen, P. A., et al., “fMRI functional connectivity of the periaqueductal gray in PTSD and its dissociative subtype,” Brain Behav., 6, No. 12, e00579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Holter, S. M., Einicke, J., Sperling, B., et al., “Tests for anxiety-related behavior in mice,” Curr. Protoc. Mouse Biol., 5, No. 4, 291–309 (2015).

    Article  PubMed  Google Scholar 

  • Hopper, J. W., Frewen, P. A., van der Kolk, B. A., and Lanius, R. A., “Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery,” J. Trauma Stress, 20, No. 5, 713–725 (2007).

    Article  PubMed  Google Scholar 

  • Jeong, H., Chung, Y. A., Ma, J., et al., “Diverging roles of the anterior insula in trauma-exposed individuals vulnerable or resilient to posttraumatic stress disorder,” Sci. Rep., 9, No. 1, 15539 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jud, C., Schmutz, I., Hampp, G., et al., “A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions,” Biol. Proced. Online, 7, 101–116 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kekelidze, Zh. I. and Portnova, A. A., “Diagnostic criteria for post-traumatic stress disorder,” Zh. Nevrol. Psikhiat., 109, 4–7 (2009).

    CAS  Google Scholar 

  • Kessler, R. C., “Posttraumatic stress disorder: the burden to the individual and to society,” J. Clin. Psychiatry, 61, No. 5, 4–14 (2000).

    PubMed  Google Scholar 

  • Kwapis, J. L., Jarome, T. J., Lee, J. L., and Helmstetter, F. J., “The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning,” Neurobiol. Learn. Mem., 123, 110–116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanius, R. A., Vermetten, E., Loewenstein, R. J., et al., “Emotion modulation in PTSD: Clinical and neurobiological evidence for a dissociative subtype,” Am. J. Psychiatry, 167, No. 6, 640–647 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lguensat, A., Bentefour, Y., Bennis, M., et al., “Susceptibility and resilience to PTSD-like symptoms in mice are associated with opposite dendritic changes in the prelimbic and infralimbic cortices following trauma,” Neuroscience, 418, 166–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Liberzon, I., Khan, S., and Young, E., “Animal models of posttraumatic stress disorder,” in: Handbook of Stress and the Brain, Steckler, T. et al. (eds.), Elsevier, Amsterdam (2005) Vol. 5, Pt. 2, pp. 231–250.

  • Lister, R. G., “The use of a plus-maze to measure anxiety in the mouse,” Psychopharmacology (Berlin), 92, 180–185 (1987).

    Article  CAS  Google Scholar 

  • Molchanova, E. S., “Post-traumatic stress and acute stress disorders in DSM-V format: amendments and previous problems,” Med. Psikh. Ross., 6, No. 1, 2 (2014).

    Google Scholar 

  • Osuch, E. A., Benson, B., Geraci, M., et al., “Regional cerebral blood flow correlated with flashback intensity in patients with posttraumatic stress disorder,” Biol. Psychiatry, 50, No. 4, 246–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Penzo, M. A., Robert, V., Tucciarone, J., et al., “The paraventricular thalamus controls a central amygdala fear circuit,” Nature, 519, No. 7544, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pissiota, A., Frans, O., Fernandez, M., et al., “Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study,” Eur. Arch. Psychiatry Clin. Neurosci., 252, No. 2, 68–75 (2002).

    Article  PubMed  Google Scholar 

  • Polak, A. R., Witteveen, A. B., Reitsma, J. B., and Olff, M., “The role of executive function in posttraumatic stress disorder: a systematic review,” J. Affect. Disord., 141, 11–21 (2012).

    Article  PubMed  Google Scholar 

  • Rabellino, D., Densmore, M., Frewen, P. A., et al., “Aberrant functional connectivity of the amygdala complexes in PTSD during conscious and subconscious processing of trauma-related stimuli,” PLoS One, 11, No. 9, e0163097 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, L. and Riedel, G., “Comparison of automated home-cage monitoring systems: emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions,” J. Neurosci. Meth., 234, 13–25 (2014).

    Article  CAS  Google Scholar 

  • Robinson, L., Plano, A., Cobb, S., and Riedel, G., “Long-term home cage activity scans reveal lowered exploratory behaviour in symptomatic female Rett mice,” Behav. Brain Res., 250, 148–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybnikova, E. A., Mironova, V. I., Tyul’kova, E. I., and Samoilov, M. O., “The anxiolytic effect of mild hypobaric hypoxia in a model of post-traumatic stress disorder in rats,” Zh. Vyssh. Nerv. Deyat., 58, No. 4, 486–492 (2008).

    CAS  Google Scholar 

  • Rybnikova, E. A., Vorob’ev, M. G., and Samoilov, M. O., “Hypoxic post-conditioning corrects behavioral impairments in rats in a model of post-traumatic stress disorder,” Zh. Vyssh. Nerv. Deyat., 62, No. 3, 364 (2012).

    CAS  Google Scholar 

  • Schoner, J., Heinz, A., Endres, M., et al., “Post-traumatic stress disorder and beyond: an overview of rodent stress models,” J. Cell. Mol. Med., 21, No. 10, 2248–2256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, L. M., Whalen, P. J., Pitman, R. K., et al., “An fMRI study of anterior cingulate function in posttraumatic stress disorder,” Biol. Psychiatry, 50, No. 12, 932–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear,” J. Psychiatr. Res., 41, 848–860 (2007a).

    Article  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “Hyperarousal does not depend on trauma- related contextual memory in an animal model of posttraumatic stress disorder,” Physiol. Behav., 90, 103–107 (2007b).

    Article  CAS  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “Toward an animal model of posttraumatic stress disorder,” Ann. N. Y. Acad. Sci., 1071, 324–334 (2006).

    Article  PubMed  Google Scholar 

  • Spiers, J. G., Chen, H. C., Steyn, F. J., et al., “Noninvasive assessment of altered activity following restraint in mice using an automated physiological monitoring system,” Stress, 20, No. 1, 59–67 (2017).

    Article  PubMed  Google Scholar 

  • Toropova, K. A. and Anokhin, K. V., “Modeling of post-traumatic stress disorder in mice: nonlinear dependence on the strength of the traumatic action,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 378–394 (2018).

    Google Scholar 

  • Urbach, Y. K., Raber, K. A., Canneva, F., et al., “Automated phenotyping and advanced data mining exemplified in rats transgenic for Huntington’s disease,” J. Neurosci. Meth., 234, 38–53 (2014).

    Article  Google Scholar 

  • Walf, A. A. and Frye, C. A., “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., 2, 322–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Liu, J., Zhang, J., et al., “Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis,” Sci. Rep., 6, 27131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yehuda, R. and Antelman, S. M., “Criteria for rationally evaluating animal models of posttraumatic stress disorder,” Biol. Psychiatry, 33, 479–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Fukushima, H., and Kida, S., “Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory,” Mol. Brain, 4, 4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., Zhang, R., Li, K., et al., “Altered cortical and subcortical local coherence in PTSD: evidence from resting-state fMRI,” Acta Radiol., 56, No. 6, 746–753 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Toropova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 5, pp. 668–681, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, K.A., Ivashkina, O.I., Ivanova, A.A. et al. Long-Term Changes in Spontaneous Behavior and c-Fos Expression in the Brain in Mice in the Resting State in a Model of Post-Traumatic Stress Disorder. Neurosci Behav Physi 51, 629–638 (2021). https://doi.org/10.1007/s11055-021-01116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01116-z

Keywords

Navigation