Skip to main content
Log in

Effects of Early Proinflammatory Stress on Anxiety and Depression-Like Behavior in Rats of Different Ages

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Early proinflammatory stress created by administration of lipopolysaccharide (LPS) (50 μg/kg s.c.) on days 3 and 5 of postnatal life led to decreases in movement activity, reductions in exploratory behavior, and increases in anxiety in rats at adolescent age (1–1.5 months) in the open field and elevated plus maze tests. Greater changes in anxiety behavior were seen in males than females. Administration of LPS in early ontogeny induced signs of depression-like behavior at adolescent age in both males and females, this being detected in the anhedonia test as a reduction in the preference for 1% sucrose solution, unlike the situation in the control groups. The forced swimming test showed signs of depression-like behavior in males but not in females, but only on first testing. In adult rats (3–3.5 months), after increased handling and acquisition of food-procuring reflexes, these changes in anxiety and depression-like behavior largely disappeared. Administration of LPS at early age led to increased serum IL-1β levels in adult males after repeated stress exposure, while females showed increased corticosterone levels as compared with control animals. These results provide evidence of increased signs of anxious-depressive behavior in rats after early exposure to proinflammatory stress, along with sex-related differences and the possibility of correcting the negative consequences of stress in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Kessler, M. Petukhova, N. A. Sampson, et al., “Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States,” Int. J. Methods Psychiatr. Res., 21, No. 3, 169–184 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. G. Parker and H. Brotchie, “Gender differences in depression,” Int. Rev. Psychiatry, 22, 429–436 (2010).

    PubMed  Google Scholar 

  3. M. B. Solomon and J. P. Herman, “Sex differences in psychopathology: of gonads, adrenals and mental illness,” Physiol. Behav., 97, 250–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. D. A. Bangasser and R. J. Valentino, “Sex differences in stress-related psychiatric disorders: neurobiological perspectives,” Front. Neuroendocrinol., 35, 303–319 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. R. M. Shansky, “Sex differences in PTSD resilience and susceptibility: challenges for animal models of fear learning,” Neurobiol. Stress, 1, 60–65 (2015).

    PubMed  Google Scholar 

  6. H. Benmhammed, S. El Hayek, A. Nassiri, et al., “Effects of lipopolysaccharide administration and maternal deprivation on anxiety and depressive symptoms in male and female Wistar rats: Neurobehavioral and biochemical assessments,” Behav. Brain Res., 362, 46–55 (2019).

    CAS  PubMed  Google Scholar 

  7. A. S. Miragaia, G. S. de Oliveira Wertheimer, A. C. Consoli, et al., “Maternal deprivation increases anxiety- and depressive-like behaviors in an age-dependent fashion and reduces neuropeptide Y expression in the amygdala and hippocampus of male and female young adult Rats,” Front. Behav. Neurosci., 7, No. 12, 159 (2018).

    Google Scholar 

  8. Y. Wei, G. Wang, H. Wang, et al., “Sex-dependent impact of different degrees of maternal separation experience on OFT behavioral performances after adult chronic unpredictable mild stress exposure in rats,” Physiol. Behav., 194, 153–161 (2018).

    CAS  PubMed  Google Scholar 

  9. N. D. Broshevitskaya, I. V. Pavlova, M. I. Zaichenko, et al., “Sex-related differences in defensive behavior in adult rats in response to early pro-inflammatory stress,” Zh. Vyssh. Nerv. Deyat., 70 (in press) (2020).

  10. C. S. Custódio, B. S. F. Mello, A. J. M. C. Filho, et al., “Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex and age related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders,” Mol. Neurobiol., 55, No. 5, 3775–3788 (2018).

    PubMed  Google Scholar 

  11. A. L. Dinel, C. Joffre, P. Trifilieff, et al., “Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood,” J. Neuro-inflammation, 11, 155 (2014).

    Google Scholar 

  12. A. K. Walker, T. Nakamura, R. J. Byrne, et al., “Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis,” Psychoneuroendocrinology, 34, No. 10, 1515–1525 (2009).

    CAS  PubMed  Google Scholar 

  13. N. C. Victoria, and A. Z. Murphy, “Exposure to early life pain: long term consequences and contributing mechanisms,” Curr. Opin. Behav. Sci., 7, 61–68 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. C. D. Walker, K. G. Bath, M. Joels, et al., “Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential,” Stress, 20, No. 5, 421–448 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. G. A. Grigoryan, “Sex-related differences in behavior and biochemical markers in animals in response to neuroinfl ammatory stress,” Usp. Fiziol. Nauk., 51, No. 1, 1–15 (2020).

    Google Scholar 

  16. C. Alexander and E. T. Rietschel, “Bacterial lipopolysaccharides and innate immunity,” J. Endotoxin Res., 7, No. 3, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  17. R. Dantzer, J. C. O’Connor, G. G. Freund, et al., “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nature Rev. Neurosci., 9, 46–56 (2008).

    CAS  Google Scholar 

  18. K. A. Dudek, L. Dion-Albert, F. N. Kaufmann, et al., “Neurobiology of resilience in depression: immune and vascular insights from human and animal studies,” Eur. J. Neurosci., (2019), https://doi.org/10.1111/ejn.14547.

  19. A. Tishkina, M. Stepanichev, I. Kudryashova, et al., “Neonatal pro-inflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response,” Behav. Brain Res., 304, 1–10 (2016).

    PubMed  Google Scholar 

  20. S. D. Bilbo, R. Yirmiya, J. Amat, et al., “Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats,” Psychoneuroendocrinology, 33, 261–269 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. C. M. Tenk, M. Kavaliers, and K. P. Ossenkopp, “Neonatal treatment with lipopolysaccharide differentially affects adult anxiety responses in the light-dark test and taste neophobia test in male and female rats,” Int. J. Dev. Neurosci., 31, No. 3, 171–180 (2013).

    CAS  PubMed  Google Scholar 

  22. L. D. Claypoole, B. Zimmerberg, and L. L. Williamson, “Neonatal lipopolysaccharide treatment alters hippocampal neuro-inflammation, microglia morphology and anxiety-like behavior in rats selectively brad for an infantile trait,” Brain Behav. Immun., 59, 135–146 (2017).

    CAS  PubMed  Google Scholar 

  23. N. Shanks, S. Larocque, and M. J. Meaney, “Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress,” J. Neurosci., 15, No. 1 Pt 1, 376–384 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. I. Berkiks, L. M. Garcia-Segura, A. Nassiri, et al., “The sex differences of the behavior response to early life immune stimulation: Microglia and astrocytes involvement,” Physiol. Behav., 199, 386–394 (2019).

    CAS  PubMed  Google Scholar 

  25. B. S. F. Mello, A. J. M. Chaves Filho, C. S. Custódio, et al., “Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression,” J. Neuroimmunol., 320, 133–142 (2018).

    CAS  PubMed  Google Scholar 

  26. M. M. Bernardi, L. P. Teixeira, A. P. Ligeiro-de-Oliveira, et al., “Neonatal lipopolysaccharide exposure induces sexually dimorphic sickness behavior in adult rats,” Psychol. Neurosci., 7, No. 2, 113–123 (2014).

    CAS  Google Scholar 

  27. P. M. Pitychoutis, K. Nakamura, P. A. Tsonis, and Z. Papadopoulou-Daifoti, “Neurochemical and behavioral alterations in an inflammatory model of depression: sex differences exposed,” Neuroscience, 159, No. 4, 1216–1232 (2009).

    CAS  PubMed  Google Scholar 

  28. C. E. Millett, B. E. Phillips, and E. F. H. Saunders, “The Sex-specific effects of LPS on depressive-like behavior and oxidative stress in the hippocampus of the mouse,” Neuroscience, 399, 77–88 (2019).

    CAS  PubMed  Google Scholar 

  29. I. V. Pavlova and M. P. Rysakova, “Signs of anxiety in Wistar rats on acquisition of conditioned refl ex fear,” Zh. Vyssh. Nerv. Deyat., 65, No. 6, 719–735 (2015).

    Google Scholar 

  30. R. D. Porsolt, G. Anton, N. Blavet, and M. Jalfre, “Behavioral despair in rats: a new model sensitive to antidepressant treatments,” Eur. J. Pharmacol., 47, 379–391 (1978).

    CAS  PubMed  Google Scholar 

  31. M. Y. Stepanichev, A. O. Tishkina, M. R. Novikova, et al., “Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms,” Acta Neurobiol. Exp., 76, No. 4, 324–333 (2016).

    Google Scholar 

  32. V. M. Doenni, J. M. Gray, C. M. Song, et al., “Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling,” Brain Behav. Immun., 58, 237–247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Opendak, E. Gould, and R. Sullivan, “Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior,” Dev. Cogn. Neurosci., 25, 145–159 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. G. A. Grigor’yan, N. N. Dygalo, A. B. Gekht, et al., “Molecularcellular mechanisms of depression. The roles of glucocorticoids, cytokines, and neurotrophic factors in the genesis of depressive disorders,” Usp. Fiziol. Nauk., 44, No. 2, 3–20 (2014).

    Google Scholar 

  35. C. J. Peña, M. Smith, A. Ramakrishnan, et al., “Early life stress alters transcriptomic patterning across reward circuitry in male and female mice,” Nat. Commun., 10, No. 1, 5098 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. S. D. Bilbo, N. J. Newsum, D. B. Sprunger, et al., “Differential effects of neonatal handling on early life infection-induced alterations in cognition in adulthood,” Brain Behav. Immun., 21, No. 3, 332–342 (2007).

    PubMed  Google Scholar 

  37. R. Dang, Y. Y. Guo, K. Zhang, et al., “Predictable chronic mild stress promotes recovery from LPS-induced depression,” Mol. Brain, 12, No. 1, 42 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. E. L. Harrison and B. T. Baune, “Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models,” Transl. Psychiatry, 4, 390 (2014).

    Google Scholar 

  39. T. Y. Huang and C. H. Lin, “A comparison between chronic exercise training and desipramine as treatments for the depression-like behavior of early-life maternal deprivation rats,” Neurosci. Lett., 480, 201–205 (2010).

    CAS  PubMed  Google Scholar 

  40. S. D. Bilbo and J. M. Schwarz, “The immune system and developmental programming of brain and behavior,” Front. Neuroendocrinol., 33, 267–286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. L. K. Fonken, M. G. Frank, A. D. Gaudet, et al., “Neuro-inflammatory priming to stress is differentially regulated in male and female rats,” Brain Behav. Immun., 70, 257–267 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. S. Villapol, V. Faivre, P. Joshi, et al., “Early sex differences in the immune-inflammatory responses to neonatal ischemic stroke,” Int. J. Mol. Sci., 20, No. 15, pii: E3809 (2019), https://doi.org/10.3390/ijms20153809.

  43. M. Adzic, J. Djordjevic, M. Mitic, et al., “The contribution of hypothalamic neuroendocrine, neuroplastic and neuro-inflammatory processes to lipopolysaccharide-induced depressive-like behaviour in female and male rats: Involvement of glucocorticoid receptor and C/EBP-β,” Behav. Brain Res., 291, 130–139 (2015).

    CAS  PubMed  Google Scholar 

  44. S. Bodhankar, A. Lapato, Y. Chen, et al., “Role for microglia in sex differences after ischemic stroke: importance of M2,” Metab. Brain. Dis., 30, 1515–1529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. E. Vegeto, C. Bonincontro, G. Pollio, et al., “Estrogen prevents the lipopolysaccharide-induced infl ammatory response in microglia,” J. Neurosci., 21, No. 6, 1809–1818 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. A. Villa, E. Vegeto, A. Poletti, and A. Maggi, “Estrogens, neuro-inflammation, and neurodegeneration,” Endocr. Rev., 37, No. 4, 372–402 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Sárvári, I. Kalló, E. Hrabovszky, et al., “Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats,” PLoS One, 9, No. 2, e88540 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. C. Barth, A. Villringer, and J. Sacher, “Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods,” Front. Neurosci., 9, 37 (2015), https://doi.org/10.3389/fnins.2015.00037.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pavlova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 7, pp. 823–842, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broshevitskaya, N.D., Pavlova, I.V., Zaichenko, M.I. et al. Effects of Early Proinflammatory Stress on Anxiety and Depression-Like Behavior in Rats of Different Ages. Neurosci Behav Physi 51, 390–401 (2021). https://doi.org/10.1007/s11055-021-01083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01083-5

Keywords

Navigation