What is “Acute Hearing”? Measures of the Frequency-Resolving Power of Hearing

The current levels of development of diagnostic methods for the sensitivity and frequency resolving power (FRP) of hearing are significantly different. Devices for measuring FRP have not entered clinical practice. Laboratory methods for measuring FRP are not suitable for practical applications. Signals with rippled spectra may provide an effective tool for testing the FRP of hearing both in studies of the basic mechanisms of hearing and in practical audiology. The use of such signals for testing allows measurement not of the acuteness of individual frequency-selective filter channels but directly assesses their ability to analyze sound signals with complex time-spectral patterns. In addition, measurement of FRP using rippled test signals is convenient for practical application. Measurements using rippled test signals yield data on the real ability of the auditory system to discriminate complex sound signals. Furthermore, these measurements demonstrate the roles of a number of basic auditory mechanisms – compressive nonlinearity, lateral suppression, and the frequency- and time-based mechanisms of frequency analysis – in the perception of complex auditory signals. Depending on the discrimination task, either frequency or time analysis is activated, giving fundamentally different evaluations of FRP. There is successful experience of the use of test signals with rippled spectra for assessment of auditory acuity in users of cochlear implants.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    World Health Organization, Deafness and Hearing Loss, https://www.who.int/health-topics/hearing-loss.

  2. 2.

    G. F. Pick, E. F. Evans, and J. P. Wilson, “Frequency resolution in patients with hearing loss of cochlear origin,” in: Psychophysics and Physiology of Hearing, E. F. Evans and J. P. Wilson (eds.), Academic Press, New York (1977), pp. 273–282.

    Google Scholar 

  3. 3.

    E. Zwicker and K. Schorn, “Psychoacoustical tuning curves in audiology,” Audiology, 17, 120–140 (1978).

    CAS  PubMed  Google Scholar 

  4. 4.

    M. Florentine, S. Buus, B. Scharf, and E. Zwicker, “Frequency selectivity in normally-hearing and hearing-impaired observers, J. Speech Hear. Res., 23, 646–669 (1980).

    CAS  PubMed  Google Scholar 

  5. 5.

    B. C. J. Moore, “Frequency selectivity and temporal resolution in normal and hearing-impaired listeners,” Br. J. Audiol., 19, 189–201 (1985).

    CAS  PubMed  Google Scholar 

  6. 6.

    R. S. Tyler and N. Tye-Murray, “Frequency resolution measured by adaptively varying the notchwidth: results from normal and hearing impaired,” in: Auditory Frequency Selectivity, B. C. J. Moore and R. D. Patterson (eds.), Plenum Prsess, New York (1986); pp. 323–330.

  7. 7.

    W. A. Dreschler and R. Plomp, “Relation between psychophysical data and speech perception for hearing impaired subjects,” J. Acoust. Soc. Am., 68, 1608–1615 (1980).

    CAS  PubMed  Google Scholar 

  8. 8.

    M. P. Gorga and P. J. Abbas, “Forward-masking AP tuning curves in normal and in acoustically traumatized ears,” J. Acoust. Soc. Am., 70, 1322–1330 (1981).

    CAS  PubMed  Google Scholar 

  9. 9.

    R. D. Patterson, I. Nimmo-Smith, D. L. Weber, and R. Milory, “The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold,” J. Acoust. Soc. Am., 72, 1788–1803 (1982).

    CAS  PubMed  Google Scholar 

  10. 10.

    J. M. Festen and R. Plomp, “Relations between auditory functions in impaired hearing,” J. Acoust. Soc. Am., 73, 652–662 (1983).

    CAS  PubMed  Google Scholar 

  11. 11.

    P. G. Stelmachowitz, W. Jesteadt, M. P. Gorga, and J. Mott, “Speech discrimination ability and its relation to psychophysical tuning curves (PTCs),” J. Acoust. Soc. Am., 77, 620–627 (1985).

    Google Scholar 

  12. 12.

    A. R. Thornton and P. J. Abbas, “Low-frequency hearing loss: Perception of fi ltered speech, psychophysical tuning curves, and masking,” J. Acoust. Soc. Am., 67, 638–643 (1980).

    CAS  PubMed  Google Scholar 

  13. 13.

    M. Hannley and M. F. Dorman, “Susceptibility to intraspeech spread of masking in listeners with sensorineural hearing loss,” J. Acoust. Soc. Am., 74, 40–51 (1983).

    CAS  PubMed  Google Scholar 

  14. 14.

    R. S. Tyler, J. W. Hall, B. R. Glasberg, et al., “Auditory filter asymmetry in the hearing impaired,” J. Acoust. Soc. Am., 76, 1363–1368 (1984).

    CAS  PubMed  Google Scholar 

  15. 15.

    E. Zwicker, “On a psychoacoustical equivalent of tuning curves,” in: Facts and Models in Hearing, E. Zwicker and E. Terhardt (eds.), Springer, Berlin (1974), pp. 132–141.

    Google Scholar 

  16. 16.

    E. Zwicker, Psychoacoustics, Springer, Berlin (1982).

    Google Scholar 

  17. 17.

    B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from notched-noise data,” Hear. Res., 47, 103–138 (1990).

    CAS  PubMed  Google Scholar 

  18. 18.

    J. P. Wilson and E. F. Evans, “Grating acuity of the ear: psychophysical and neurophysiological measures of frequency resolving power,” in: 7th Int. Congr. on Acoustics, Akad. Kiado, Budapest (1971); Vol. 3, pp. 397–400.

  19. 19.

    E. F. Evans and J. P. Wilson, “Frequency selectivity of the cochlea,” in: Basic Mechanisms of Hearing, A. R. Miller (ed.), Academic Press, New York (1973), pp. 519–551.

    Google Scholar 

  20. 20.

    F. A. Bilsen, J. H. ten Kate, T. J. F. Buunen, and J. Raatgever, “Responses of single units in the cochlear nucleus of the cat to cosine noise,” J. Acoust. Soc. Am., 58, 858–866 (1975).

    CAS  PubMed  Google Scholar 

  21. 21.

    E. F. Evans, “Frequency selectivity at high signal levels of single units in cochlear nerve and cochlear nucleus,” in: Psychophysics and Physiology of Hearing, E. F. Evans and J. P. Wilson (eds.), Academic Press, London (1977), pp. 185–192.

    Google Scholar 

  22. 22.

    T. Houtgast, “Psychophysical evidence for lateral inhibition in hearing,” J. Acoust. Soc. Am., 51, 1885–1894 (1972).

    CAS  PubMed  Google Scholar 

  23. 23.

    T. Houtgast, “Masking patterns and lateral inhibition,” in: Facts and Models in Hearing, E. Zwicker and E. Terhardt (eds.), Springer, Berlin (1974), pp. 258–265.

    Google Scholar 

  24. 24.

    G. F. Pick, “Level dependence of psychophysical frequency resolution and auditory filter shape,” J. Acoust. Soc. Am., 68, 1085–1095 (1980).

    CAS  PubMed  Google Scholar 

  25. 25.

    F. A. Bilsen and J. L. Wieman, “Atonal periodicity sensation for comb filtered noise signals,” in: Psychophysical and Behavioral Studies in Hearing, G. van der Brink and F. A. Bilsen (eds.), Delft University Press, Delft (1980), pp. 379–382.

    Google Scholar 

  26. 26.

    W. A. Yost, “The dominance region and ripple-noise pitch: A test of the peripheral weighting model,” J. Acoust. Soc. Am., 72, 416–425 (1982).

    CAS  PubMed  Google Scholar 

  27. 27.

    W. A. Yost, R. Hill, and T. Perez-Falcon, “Pitch discrimination of ripple noise,” J. Acoust. Soc. Am., 63, 1166–1173 (1977).

    Google Scholar 

  28. 28.

    W. A. Yost, and R. Hill, “Models of the pitch and pitch strength of ripple noise,” J. Acoust. Soc. Am., 66, 400–410 (1979).

    Google Scholar 

  29. 29.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Frequency resolving power measured by rippled noise,” Hear. Res., 78, 31–40 (1994).

    PubMed  Google Scholar 

  30. 30.

    F. C. Carterette, M. P. Friedman, and J. D. Lovell, “Mach bands in hearing,” J. Acoust. Soc. Am., 45, 986–998 (1969).

    CAS  PubMed  Google Scholar 

  31. 31.

    R. V. Shannon, “Two-tone unmasking and suppression in a forward-masking situation,” J. Acoust. Soc. Am., 59, 1460–1470 (1976).

    CAS  PubMed  Google Scholar 

  32. 32.

    A. Ya. Supin, D. I. Nechaev, V. V. Popov, and E. V. Sysueva, “Sharpening of the signal spectrum contrast as a result of Lateral suppression in the human auditory system,” Dokl. Biol. Sci., 478, 240–244 (2018).

    Google Scholar 

  33. 33.

    SA. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple depth and density resolution of rippled noise,” J. Acoust. Soc. Am., 106, 2800–2804 (1999).

    PubMed  Google Scholar 

  34. 34.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “The effect of masking noise on rippled-spectrum resolution,” Hear. Res., 151, 157–166 (2001).

    CAS  PubMed  Google Scholar 

  35. 35.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Rippled-spectrum resolution dependence on level,” Hear. Res., 185, 1–12 (2003).

    PubMed  Google Scholar 

  36. 36.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Rippled-spectrum resolution dependence on masker-to-probe ratio,” Hear. Res., 204, 191–199 (2005).

    PubMed  Google Scholar 

  37. 37.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Masking of rippled-spectrum-pattern resolution in diotic and dichotic presentations,” Hear. Res., 260, 109–116 (2010).

    PubMed  Google Scholar 

  38. 38.

    O. N. Milekhina, D. I. Nechaev, V. V. Popov, A. Ya. Supin, “Compressive nonlinearity in the auditory system: Manifestation in the action of complex sound signals,” Biol. Bull., 44, 603–609 (2017).

    Google Scholar 

  39. 39.

    O. N. Milekhina, D. I. Nechaev, A. Ya. Supin, “Compressive nonlinearity of human hearing in sound spectra discrimination,” Dokl. Biol. Sci., 474, 89–92 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    O. N. Milekhina, D. I. Nechaev, and A. Ya. Supin, “Contribution of cochlear compression to discrimination of rippled spectra in on- and low-frequency noise,” J. Assoc. Res. Otolaryngol., 19, No. 5, 611–618 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    A. Ya. Supin, V. V. Popov, O. N. Milekhina, and M. B. Tarakanov, “Ripple density resolution for various rippled-noise patterns,” J. Acoust. Soc. Am., 103, 2042–2050 (1998).

    PubMed  Google Scholar 

  42. 42.

    G. A. van Zanten and C. J. J. Senten, “Spectro-temporal modulation transfer function (STMTF) for various types of temporal modulation and a peak distance of 200 Hz,” J. Acoust. Soc. Am., 74, 52–62 (1983).

    PubMed  Google Scholar 

  43. 43.

    T. Chi, Y. Gao, M. G. Guyton, et al., “Spectro-temporal modulation transfer function and speech intelligibility,” J. Acoust. Soc. Am., 106, 2719–2732 (1999).

    CAS  PubMed  Google Scholar 

  44. 44.

    L. M. Litvak, A. J. Spahr, A. A. Saoji, and G. Y. Fridman, “Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners,” J. Acoust. Soc. Am., 122, 982–991 (2007).

    PubMed  Google Scholar 

  45. 45.

    A. A. Saoji, L. Litvak, A. J. Spahr, and D. A. Eddins, “Spectral modulation detection and vowel and consonant identification in cochlear implant listeners,” J. Acoust. Soc. Am., 126, 955–958 (2009).

    PubMed  Google Scholar 

  46. 46.

    J. M. Aronoff and D. M. Landsberger, “The development of a modified spectral ripple test,” J. Acoust. Soc. Am., 134, EL217–222 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    D. I. Nechaev, O. N. Milekhina, and A. Ya. Supin, “Hearing sensitivity to gliding rippled spectrum patterns,” J. Acoust. Soc. Am., 143, 2387–2393 (2018).

    PubMed  Google Scholar 

  48. 48.

    V. K. Narne, B. Van Dun, S. Bansal, et al., “Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests,” J. Acoust. Soc. Am., 140, 4298–4306 (2016).

    PubMed  Google Scholar 

  49. 49.

    B. A. Henry, C. W. Turne, and A. Behren, “Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners,” J. Acoust. Soc. Am., 118, 1111–1121 (2005).

    PubMed  Google Scholar 

  50. 50.

    O. N. Milekhina, D. I. Nechaev, and A. Ya. Supin, “Rippled-spectrum resolution dependence on frequency: Estimates obtained by discrimination from rippled and nonrippled reference signals,” J. Acoust. Soc. Am., 146, 2231–2239 (2019).

    PubMed  Google Scholar 

  51. 51.

    D. I. Nechaev, O. N. Milekhin, and A. Y. Supin, “Estimates of ripple-density resolution based on the discrimination from rippled and nonrippled reference signals,” Trends Hear., 23 (2019), doi 2331216518824435.

  52. 52.

    E. S. Anderson, A. J. Oxenham, P. B. Nelson, and D. A. Nelson, “Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users,” J. Acoust. Soc. Am., 132, 3925–3934 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    E. Zwicker, “Masking and psychophysical excitation as consequences of the ear’s frequency analysis,” in: Frequency Analysis and Periodicity Detection in Hearing, R. Plomp et al. (eds.), Leiden (1970), pp. 376–394.

  54. 54.

    B. A. Henry and C. W. Turner, “The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners,” J. Acoust. Soc. Am., 113, 2861–2873 (2003).

    PubMed  Google Scholar 

  55. 55.

    J. H. Won, W. R. Drennan, and J. T. Rubinstei, “Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users,” J. Assoc. Res. Otolaryngol., 8, 384–392 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    J. H. Won, E. L. Humphrey, K. R. Yeager, et al., “Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users,” J. Acoust. Soc. Am., 136, 2714–2725 (2014).

    PubMed  Google Scholar 

  57. 57.

    E. S. Anderson, D. A. Nelson, H. Kreft, et al., “Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users,” J. Acoust. Soc. Am., 130, 364–375 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    E. K. Jeon, C. W. Turner, S. A. Karsten, et al., “Cochlear implant users’ spectral ripple resolution,” J. Acoust. Soc. Am., 138, 2350–2358 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    C. T. V. Choi and Y. H. Lee, “A review of stimulating strategies for cochlear implants,” in: Cochlear Implant Research Update, C. Umat (ed.), IntechOpen, Malaysia (2012).

  60. 60.

    W. R. Drennan, E. S. Anderson, J. H. Won, and J. T. Rubinstein, “Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users,” Ear Hear., 35, No. 3, e92–e98 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Supin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 4, pp. 436–447, April, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Supin, A.Y. What is “Acute Hearing”? Measures of the Frequency-Resolving Power of Hearing. Neurosci Behav Physi 51, 100–107 (2021). https://doi.org/10.1007/s11055-020-01044-4

Download citation

Keywords

  • hearing
  • selectivity
  • resolving power
  • rippled spectra