A Neural Network Model of the Recognition of the Familiarity of Number Sequences

One component of recognition memory is the recognition of familiarity, where the subject remembers the fact that a particular object or event has been encountered previously but is unable to remember the details of the object or event, or the context in which the object or event was experienced. Experiments reported by Standing [1970, 1973] identified a paradoxically large memory capacity for recognition of the familiarity of natural images, words, and musical melodies. Existing neural network models for recognition of familiarity have demonstrated the potential for recognition of familiarity with memory of the order of n2, where n is the number of neurons in the model. In the present study we propose a new model for the recognition of familiarity oriented to the recognition of the familiarity of time sequences (especially number sequences), which is characterized by sparse encoding of input patterns. Computer experiments showed that specific memory capacity in this model in certain conditions of errorless recognition is greater than that in known Hopfield-type models.

This is a preview of subscription content, access via your institution.

References

  1. Aggleton, J. P., Vann, S. D., Denby, C., et al., “Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology,” Neuropsychologia, 43, No. 12, 1810–1823 (2005).

    Article  Google Scholar 

  2. Ameen-Ali, K. E., Easton, A., and Eacott, M. J., “Moving beyond standard procedures to assess spontaneous recognition memory,” Neurosci. Biobehav. Rev., 53, 37–51 (2015).

    CAS  Article  Google Scholar 

  3. Amit, D. J., Modeling Brain Function, Cambridge University Press, Cambridge (1989).

    Google Scholar 

  4. Androulidakis, Z., Lulham, A., Bogacz, R., and Brown, M. W., “Computational models can replicate the capacity of human recognition memory,” Network: Comput. Neural Syst., 9, 161–182 (2008).

    Article  Google Scholar 

  5. Bastin, C., Besson, G., Simon, J., et al., “An integrative memory model of recollection and familiarity to understand memory deficits,” Behav. Brain Sci., 42, 1–66 (2019).

    Article  Google Scholar 

  6. Bogacz, R. and Brown, M. W., “Comparison of computational models of familiarity discrimination in the perirhinal cortex,” Hippocampus, 13, 494–524 (2003).

    Article  Google Scholar 

  7. Bogacz, R. and Brown, M. W., “The restricted influence of the sparseness of coding on the capacity of the familiarity discrimination networks,” Network: Comput. Neural Syst., 13, 457–485 (2002).

    Article  Google Scholar 

  8. Bogacz, R., Brown, M. W., and Giraud-Carrier, C., “Model of familiarity discrimination in the perirhinal cortex,” J. Comput. Neurosci., 10, 5–23 (2001).

    CAS  Article  Google Scholar 

  9. Bowles, B., Crupi, C., Pigott, S., et al., “Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy,” Neuropsychologia, 48, 2640–2647 (2010).

    Article  Google Scholar 

  10. Brandt, K. R., Eysenck, M. W., Nielsen, M. K., and von Oertzen, T. J., “Selective lesion to the entorhinal cortex leads to an impairment in familiarity but not recollection,” Brain Cognit., 104, 82–92 (2016).

  11. Brown, M. W. and Xiang, J. Z., “Recognition memory: Neuronal substrates of the judgement of prior occurrence,” Progr. Neurobiol., 55, 149–189 (1998).

    CAS  Article  Google Scholar 

  12. Diana, R. A., Reder, L. M., Arndt, J., and Park, H., “Models of recognition: A review of arguments in favor of a dual-process account,” Psychon. Bull. Rev, 13, 1–21 (2006).

    Article  Google Scholar 

  13. Dunin-Barkovskii, V. L., Information Process in Neural Structures, Nauka, Moscow (1978).

    Google Scholar 

  14. Eichenbaum, H., “Time cells in the hippocampus: a new dimension for mapping memories,” Nat. Rev. Neurosci., 15, 732–744 (2014).

    CAS  Article  Google Scholar 

  15. Eichenbaum, H., Yonelinas, A. R., and Ranganath, C., “The medial temporal lobe and recognition memory,” Annu. Rev. Neurosci., 30, 123–152 (2007).

    CAS  Article  Google Scholar 

  16. Feinberg, L. M., Allen, T. A., Ly, D., and Fortin, N. J., “Recognition memory for social and non-social odors: Differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex,” Neurobiol. Learn. Mem., 97, 7–16 (2012).

    CAS  Article  Google Scholar 

  17. Frolov, A. A. and Murav’ev, I. P., “Information characteristics of neural networks capable of associative learning based on Hebbian plasticity,” Network: Comput. Neural Syst., 4, 495–536 (1993).

    Article  Google Scholar 

  18. Frolov, A. A. and Murav’ev, I. P., Information Characteristics of Neural Networks, Nauka, Moscow (1988).

    Google Scholar 

  19. Frolov, A. A. and Murav’ev, I. P., Neuronal Models of Associative Memory, Nauka, Moscow (1987).

    Google Scholar 

  20. Hopfield, J. J., “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA, 79, 2554–2558 (1982).

    CAS  Article  Google Scholar 

  21. Kafkas, A. and Montaldi, D., “How do memory systems detect and respond to novelty?” Neurosci. Lett., 680, 60–68 (2018).

  22. Kedrov, A. V. and Anokhin, K. V., “One-time learning of conditioned reflex freezing to odors in mice: a new behavioral model for studies of the cellular mechanisms of formation and extraction of olfactory memory,” Zh. Vyssh. Nerv. Deyat., 69, No. 4, 522–526 (2019).

    Google Scholar 

  23. Medina, J. J., “The biology of recognition memory,” Psychiatr. Times, 13, 13–16 (2008).

    Google Scholar 

  24. Merkow, M. W., Burke, J. F., and Kahanac, M. J., “The human hippocampus contributes to both the recollection and familiarity components of recognition memory,” Proc. Natl. Acad. Sci. USA, 112, 14378–14383 (2015).

    CAS  Article  Google Scholar 

  25. Miller, G. A., “The magical number seven, plus or minus two. Some limits on our capacity for processing information,” Psychol. Rev., 63, 81–97 (1956).

    CAS  Article  Google Scholar 

  26. Montaldi, D. and Mayers, A. R., “The role of recollection and familiarity in the functional differentiation of the medial temporal lobes,” Hippocampus, 20, 1291–1314 (2010).

    Article  Google Scholar 

  27. Nardo, D., Brunetti, R., Cupellini, E., and Belardinelli, M. O., “The influence of melodic and rhythmic redundancies on recognition memory for unknown musical themes,” Musicae Scientiae, 13, 337 – 355 (2009).

    Article  Google Scholar 

  28. Rutishauser, U., Schuman, E. M., and Mamelak, A. N., “Activity of human hippocampal and amygdala neurons during retrieval of declarative memories,” Proc. Natl. Acad. Sci. USA, 105, 329–334 (2008).

    CAS  Article  Google Scholar 

  29. Scalici, F., Caltagirone, C., and Carlesimo, G. A., “The contribution of different prefrontal cortex regions to recollection and familiarity: a review of fMRI data,” Neurosci. Biobehav. Rev., 83, 240–251 (2017).

    Article  Google Scholar 

  30. Slotnick, S. D., “The nature of recollection in behavior and the brain,” NeuroReport, 24, 663–670 (2013).

    Article  Google Scholar 

  31. Squire, L. R., Wixted, J. T., and Clark, R. E., “Recognition memory and the medial temporal lobe: a new perspective,” Nature Rev. Neurosci., 8, 872–883 (2007).

    CAS  Article  Google Scholar 

  32. Standing, L., “Learning 10,000 pictures,” Quat. J. Exp. Psychol., 25, 207–222 (1973).

    CAS  Article  Google Scholar 

  33. Standing, L., “Perception and memory for pictures: Single trial learning of 2500 visual stimuli,” Psychol. Sci., 19, 73–74 (1970).

    Google Scholar 

  34. Vinogradova, O. S., “Hippocampus as comparator: Role of two input and two output systems of the Hippocampus in selection and registration of information,” Hippocampus, 11, 578–598 (2001).

    CAS  Article  Google Scholar 

  35. Wais, P. E., Wixted, J. T., Hopkins, R. O., and Squire, L. R., “The hippocampus supports both the recollection and the familiarity components of recognition memory,” Neuron, 49, 459–466 (2006).

    CAS  Article  Google Scholar 

  36. Wixted, J. T. and Squire, L. R., “The medial temporal lobe and the attributes of memory,” Trends Cogn. Sci., 15, 210–217 (2011).

    Article  Google Scholar 

  37. Yonelinas, A. P., “The nature of recollection and familiarity: A review of 30 years of research,” J. Mem. Lang., 46, 441–517 (2002).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ya. B. Kazanovich.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 383–393, May–June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazanovich, Y.B. A Neural Network Model of the Recognition of the Familiarity of Number Sequences. Neurosci Behav Physi 51, 65–72 (2021). https://doi.org/10.1007/s11055-020-01040-8

Download citation

Keywords

  • recognition memory
  • recognition of familiarity
  • neural network models
  • memory capacity