Comparison of the Tripartite Organization of Synaptic Terminals in Intraocular Septal Transplants and in the Septal Area of the Brain

The septal area of the brain is functionally connected to other limbic structures and is involved in cognitive processes. Intraocular neural transplants provide an experimental model for studying the endogenous morphofunctional properties of the septum. The aim of the present work was to compare the structure of synaptic contacts in septal intraocular neural transplants and in the septal area of the brain in situ. Neurons are regarded as thee-component complexes including not only pre- and postsynaptic components, but also the astrocyte processes encircling them. Ultrastructural studies showed that despite the absence of normal afferent and efferent connections in intraocular neural transplants, their synapses reproduced the tripartite organization. Morphometric analysis of their parameters showed a decrease in the statistical mean area and perimeter of the presynaptic compartment as compared with normal. At the same time, the extent of encirclement by perisynaptic astrocyte processes in transplants was, conversely, significantly greater than in the septum in situ. The mean extents of active zones in synaptic profiles in transplanted neurons was greater than that in controls. The morphometric data obtained here indicate coordinated regulation of the sizes of the three compartments of synapses depending on the functional state of the synaptic apparatus overall.

This is a preview of subscription content, access via your institution.

References

  1. Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G., “Tripartite synapses: glia, the unacknowledged partner,” Trends Neurosci., 22, No. 5, 208–215 (1999).

    CAS  Article  Google Scholar 

  2. Bragin, A. G. and Vinogradova, O. S., “Comparison of neuronal activity in septal and hippocampal grafts developing in the anterior eye chamber of the rat,” Brain Res., 312, No. 2, 279–286 (1983).

    CAS  Article  Google Scholar 

  3. Chung, W. S., Allen, N. J., and Eroglu, C., “Astrocytes control synapse formation, function, and elimination,” Cold Spring Harb. Perspect. Biol., 7, No. 9, a020370 (2015), https://doi.org/10.1101/cshperspect.a020370.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fernandes, D. and Carvalho, A. L., “Mechanisms of homeostatic plasticity in the excitatory synapse,” J. Neurochem., 139, No. 6, 973–996 (2016).

    CAS  Article  Google Scholar 

  5. Geinisman, Y., “Structural synaptic modifications associated with hippocampal LTP and behavioral learning,” Cereb. Cortex, 10, No. 10, 952–962 (2000).

    CAS  Article  Google Scholar 

  6. Ghezali, G., Dallerac, G., and Rouach, N., “Perisynaptic astroglial processes: dynamic processors of neuronal information,” Brain Struct. Funct., 221, 2427–2442 (2016).

    Article  Google Scholar 

  7. Gray, E. G., “Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study,” J. Anat, 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasan, U. and Singh, S. K., “The astrocyte-neuron interface: An overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse,” Methods Mol. Biol., 1938, 3–18 (2019).

    CAS  Article  Google Scholar 

  9. Lushnikova, I., Skibo, G., Muller, D., and Nikonenko, I., “Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus,” Hippocampus, 19, 753–762 (2009).

    Article  Google Scholar 

  10. Meyer, D., Bonhoeffer, T., and Scheuss, V., “Balance and stability of synaptic structures during synaptic plasticity,” Neuron, 82, No. 2, 430–443 (2014).

    CAS  Article  Google Scholar 

  11. Nita, D., Cissé, Y., Timofeev, I., and Steriade, M., “Increased propensity to seizures after chronic cortical deafferentation in vivo,” J. Neurophysiol, 95, No. 2, 902–913 (2006).

    Article  Google Scholar 

  12. Rose, C. R., Felix, L., Zeug, A., et al., “Astroglial glutamate signaling and uptake in the hippocampus,” Front. Mol. Neurosci., 10, 451 (2018).

    Article  Google Scholar 

  13. Schipke, C. G. and Kettenmann, H., “Astrocyte responses to neuronal activity,” Glia, 47, No. 3, 226–232 (2004).

    Article  Google Scholar 

  14. Verkhratsky, A. and Nedergaard, M., “Physiology of astroglia,” Physiol. Rev., 98, No. 1, 239–389 (2018).

    CAS  Article  Google Scholar 

  15. Vinogradova, O. S., “Functional characteristics of nervous tissue (hippocampus and septum) transplanted into the anterior eye chamber and brain, Sov. Sci. Rev. F. Physiol. Gen. Biol., 2, 477–528 (1988).

  16. Vinogradova, O. S., “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 743–774 (2000).

    CAS  Google Scholar 

  17. Witcher, M. R., Kirov, S. A., and Harris, K. M., “Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus,” Glia, 55, 13–23 (2007).

    Article  Google Scholar 

  18. Zhuravleva, Z. N., “The hippocampus and neural transplantation,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 149–162 (2004).

    CAS  Google Scholar 

  19. Zhuravleva, Z. N., Bragin, A. G., and Vinogradova, O. S., “Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. II. Neuronal perikarya and dendritic processes,” J. Hirnforsch., 26, No. 4, 417–437 (1985).

    Google Scholar 

  20. Zhuravleva, Z. N., Bragin, A. G., and Vinogradova, O. S., “Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. III. Axonal processes and their synaptic ending,” J. Hirnforsch., 27, No. 3, 323–341 (1986).

    CAS  PubMed  Google Scholar 

  21. Zhuravleva, Z. N., Khutsyan, S. S., and Zhuravlev, G. I., “Ultrastructure of excitatory synaptic contacts in foci of epileptiform activity: experiments on intraocular neural transplants,” Zh. Vyssh. Nerv. Deyat., 66, No. 6, 742–750 (2016).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. N. Zhuravleva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 375–382, May–June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, Z.N. Comparison of the Tripartite Organization of Synaptic Terminals in Intraocular Septal Transplants and in the Septal Area of the Brain. Neurosci Behav Physi 51, 59–64 (2021). https://doi.org/10.1007/s11055-020-01039-1

Download citation

Keywords

  • septum
  • intraocular neural transplants
  • tripartite synapses
  • perisynaptic astrocyte process
  • ultrastructure
  • morphometry