Developmental Changes in Early Sharp Waves in the Hippocampus of Neonatal Rats

Synchronized activity the hallmark of neural networks. Early sharp waves (eSPW) form one type of synchronized activity – these are synchronized network discharges of neuronal ensembles seen in the developing hippocampus. Despite the fact that eSPW may play a central role in coordinating neural activity and forming hippocampal functions, little is known of changes in eSPW during early postnatal development. Our experiments on neonatal rat pups using multichannel extracellular electrodes showed that during the first two weeks of postnatal life, along with reductions in the duration of eSPW, there were increases in their frequency and amplitude. We also found an increase in extracellular recorded activity of neurons in the pyramidal layer of the hippocampus. These data lead to the suggestion that the dynamics of changes in eSPW and overall network hippocampal activity are associated with the development of the hippocampal neural network and bottom-up neuromodulator projections.

This is a preview of subscription content, access via your institution.

References

  1. Ben-Ari, Y., “Developing networks play a similar melody,” Trends Neurosci., 24, No. 6, 353–360 (2001).

    CAS  Article  Google Scholar 

  2. Ben-Ari, Y., Gaiarsa, J.-L., Tyzio, R., and Khazipov, R., “GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations,” Physiol. Rev., 87, No. 4, 1215–1284 (2007).

    CAS  Article  Google Scholar 

  3. Buhl, D. L. and Buzsáki, G., “Developmental emergence of hippocampal fast-field ‘ripple’ oscillations in the behaving rat pups,” Neuroscience, 134, No. 4, 1423–1430 (2005).

    CAS  Article  Google Scholar 

  4. Buzsáki, G., “Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning,” Hippocampus, 25, No. 10, 1073–1188 (2015).

    Article  Google Scholar 

  5. Buzsáki, G., Buhl, D. L., Harris, K. D., et al., “Hippocampal network patterns of activity in the mouse,” Neuroscience, 116, No. 1, 201–211 (2003).

    Article  Google Scholar 

  6. Buzsáki, G., Horváth, Z., Urioste, R., et al., “High-frequency network oscillation in the hippocampus,” Science, 256, No. 5059, 1025–1027 (1992).

    Article  Google Scholar 

  7. Chrobak, J. J. and Buzsáki, G., “High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat,” J. Neurosci., 16, No. 9, 3056–3066 (1996).

    CAS  Article  Google Scholar 

  8. Colonnese, M. T., Kaminska, A., Minlebaev, M., et al., “A conserved switch in sensory processing prepares developing neocortex for vision,” Neuron, 67, No. 3, 480–498 (2010).

    CAS  Article  Google Scholar 

  9. Csicsvari, J., Hirase, H., Czurkó, A., et al., “Fast network oscillations in the hippocampal CA1 region of the behaving rat,” J. Neurosci., 19, No. 16, RC20 (1999).

  10. Karlsson, K., Mohns, E. J., Viana di Prisco, G., and Blumberg, M. S., “On the co-occurrence of startles and hippocampal sharp waves in newborn rats,” Hippocampus, 16, No. 11, 959–965 (2006).

    Article  Google Scholar 

  11. Karlsson, K. Æ. and Blumberg, M. S., “Hippocampal theta in the newborn rat is revealed under conditions that promote REM sleep,” J. Neurosci., 23, No. 4, 1114–1118 (2018).

    Article  Google Scholar 

  12. Khazipov, R., Zaynutdinova, D., Ogievetsky, E., et al., “Atlas of the postnatal rat brain in stereotaxic coordinates,” Front. Neuroanat., 9, 161 (2015).

  13. Laurent, F. F., Brotons-Mas, J. R., Cid, E., et al., “Proximodistal structure of theta coordination in the dorsal hippocampus of epileptic rats,” J. Neurosci., 35, No. 11, 4760–4775 (2015).

    CAS  Article  Google Scholar 

  14. Lebovitz, R. M., Dichter, M., and Spencer, W. A., “Recurrent excitation in the CA3 region of cat hippocampus,” Int. J. Neurosci., 2, No. 2, 99–107 (1971).

  15. Leinekugel, X., Khazipov, R., Cannon, R., et al., “Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo,” Science, 296, No. 5575, 2049–2052 (2002).

    CAS  Article  Google Scholar 

  16. MacVicar, B. A. and Dudek, F. E., “Local synaptic circuits in rat hippocampus: interactions between pyramidal cells,” Brain Res., 184, No. 1, 220–223 (1980).

    CAS  Article  Google Scholar 

  17. Mohns, E. J. and Blumberg, M. S., “Synchronous bursts of neuronal activity in the developing hippocampus: modulation by active sleep and association with emerging gamma and theta rhythms,” J. Neurosci., 28, No. 40, 10,134–10,144 (2008).

    CAS  Article  Google Scholar 

  18. Mohns, E. J., Karlsson, K., and Blumberg, M. S., “Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility,” Eur. J. Neurosci., 26, No. 10, 2719–2730 (2007).

    Article  Google Scholar 

  19. Nicholson, C., Freeman, J. A., and Freeman, A., “Theory of current source-density analysis determination of conductivity tensor for anuran cerebellum,” J. Neurophysiol, 38, No. 2, 356 (1975).

  20. Pesaran, B., Spectral Analysis for Neural Signals. Short Course III, 1 (2008).

  21. Pokorný, J. and Yamamoto, T., “Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons,” Brain Res. Bull., 7, No. 2, 113–120 (1981).

    Article  Google Scholar 

  22. Rakic, P. and Riley, K. P., “Regulation of axon number in primate optic nerve by prenatal binocular competition,” Nature, 305, No. 5930, 135–137 (1983).

    CAS  Article  Google Scholar 

  23. Spigelman, I., Zhang, L., and Carlen, P. L., “Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: Membrane excitability and K+ currents,” J. Neurophysiol, 68, No. 1, 55–69 (1992).

    CAS  Article  Google Scholar 

  24. Spitzer, M. W., Calford, M. B., Clarey, J. C., et al., “Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat,” J. Neurophysiol., 85, 1283–1298 (2006).

    Article  Google Scholar 

  25. Sullivan, D., Csicsvari, J., Mizuseki, K., et al., “Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity,” J. Neurosci., 31, No. 23, 8605–8616 (2011).

    CAS  Article  Google Scholar 

  26. Traub, R. D. and Bibbig, A., “A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons,” J. Neurosci., 20, No. 6, 2086–2093 (2000).

    CAS  Article  Google Scholar 

  27. Valeeva, G., Janackova, S., Nasretdinov, A., et al., “Emergence of coordinated activity in the developing entorhinal-hippocampal network,” Cereb. Cortex, 29, No. 2, 1–15 (2019).

    Article  Google Scholar 

  28. Van der Loos, H. and Woolsey, T., “Somatosensory cortex: structural alterations following early injury to sense organs,” Science, 173, No. 4071, 395–398 (1973).

    Article  Google Scholar 

  29. Woolsey, T. and Van der Loos, H., “The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units,” Brain Res., 17, No. 2, 205–242 (1970).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. G. Minlebaev.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 351–359, May–June, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shumkova, V.V., Sitdikova, V.R., Suchkov, D.S. et al. Developmental Changes in Early Sharp Waves in the Hippocampus of Neonatal Rats. Neurosci Behav Physi 51, 42–47 (2021). https://doi.org/10.1007/s11055-020-01037-3

Download citation

Keywords

  • early activity rhythms
  • hippocampus
  • development
  • neural network
  • early sharp waves
  • rats