Skip to main content
Log in

Effects of Peptides ACTH6–9 PGP and ACTH4–7-PGP on Anxiety Levels in Rats in Punished and Unpunished Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Melanocortins form a class of regulatory peptide currently under active study; these include such biologically active substances as adrenocorticotropic hormone (ACTH) and α- β-, and γ-melanocyte-stimulating hormone (MSH). ACTH fragments, like other peptides of the melanocortins family, have marked neurotropic effects, particularly stimulating learning, memory, and attention processes. The active center of ACTH required for activation of all types of melanocortin receptor, is the sequence His-Phe-Arg-Trp and corresponds to fragment ACTH6–9. We report here studies of the synthetic peptide ACTH6–9-PGP, whose structure contains the natural fragment ACTH6–9 stabilized at the C terminal by attachment of the amino acid sequence prolyl-glycyl-proline (PGP) to increase resistance to the actions of carboxypeptidases. The effects of i.p. administration of ACTH6–9-PGP at doses of 0.5, 5, 50, 150, and 450 μg/kg as single does 15 min before assessment of anxiety levels in rats in the Vogel confl ict situation test (punished behavior) and the elevated plus maze (unpunished behavior) were studied. The effects of ACTH6–9-PGP in these tests were compared with those of its structural analog ACTH4–7-PGP at doses of 50, 150, and 450 μg/kg. The results showed that ACTH6–9-PGP in the Vogel conflict situation test increased anxiety levels in rats, which was apparent as decreases in drinking time (at all doses) and reductions in the number of licks (at doses of 0.5 and 150 μg/kg) (p < 0.01). ACTH6–9-PGP had no significant effect on the rats’ behavior in the elevated plus maze. ACTH4–7-PGP had no effects in the models of punished and unpunished behavior. Thus, ACTH6–9-PGP, in contract to ACTH4–7-PGP, was found to affect anxiety levels in rats, depending on the dose of peptide and the behavioral model used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Catania, S. Gatti, G. Colombo, and J. M. Lipton, “Targeting melanocortin receptors as a novel strategy to control inflammation,” Pharmacol. Rev., 56, No. 1, 1–29 (2004).

    Article  CAS  Google Scholar 

  2. A. Catania, “Neuroprotective actions of melanocortins: a therapeutic opportunity,” Trends Neurosci., 31, No. 7, 353–360 (2008).

    Article  CAS  Google Scholar 

  3. S. V. Koroleva and N. F. Myasoedov, “Semax as a universal drug for therapy and research,” Biol. Bull., 45, No. 6, 589–600 (2018).

    Article  Google Scholar 

  4. Y. Yang, V. J. Hruby, M. Chen, et al., “Novel binding motif of ACTH analogues at the melanocortin receptors,” Biochemistry, 48, No. 41, 9775–9784 (2009).

    Article  CAS  Google Scholar 

  5. N. G. Levitskaya, D. A. Vilenskii, E. A. Sebentsova, et al., “Influence of Semax on the emotional state of white rats in the norm and against the background of cholecystokinin-tetrapeptide action,” Biol. Bull., 37, No. 2, 186–192 (2010).

    Article  CAS  Google Scholar 

  6. J. R. Holder, Z. Xiang, R. M. Bauzo, and C. Haskell-Luevano, “Structure-activity relationships of the melanocortin tetrapeptide Ac-His-D-Phe-Arg-Trp-NH2 at the mouse melanocortin receptors 4. Modifications at the Trp position,” J. Med. Chem., 45, No. 26, 5736–5744 (2002).

  7. R. M. Dores, L. Liang, P. Davis, et al., “60 YEARS OF POMC: Melanocortin receptors: evolution of ligand selectivity for melanocortin peptides,” J. Mol. Endocrinol., 56, No. 4, T119–T133 (2016), https://doi.org/10.1530/JME-15-0292.

    Article  CAS  PubMed  Google Scholar 

  8. V. J. Hruby, B. C. Wilkes, M. E. Hadley, et al., “Alpha-melanotropin: the minimal active sequence in the frog skin bioassay,” J. Med. Chem., 30, No. 11, 2126–2130 (1987).

    Article  CAS  Google Scholar 

  9. A. J. Clark, R. Forfar, M. Hussain, et al., “ACTH Antagonists,” Front. Endocrinol. (Lausanne), 7, 101 (2016).

    Article  Google Scholar 

  10. A. Todorovic, C. J. Lensing, J. R. Holder, et al., “Discovery of melanocortin ligands via a double simultaneous substitution strategy based on the Ac-His-DPhe-Arg-Trp-NH2 template,” ACS Chem. Neurosci., 9, No. 11, 2753–2766 (2018).

    Article  CAS  Google Scholar 

  11. D. Palmer, J. P. L. Gonçalves, L. V Hansen, et al., “Click-chemistrymediated synthesis of selective melanocortin receptor 4 agonists,” J. Med. Chem., 60, No. 21, 8716–8730 (2017), https://doi.org/10.1021/acs.jmedchem.7b00353.

    Article  CAS  PubMed  Google Scholar 

  12. N. G. Levitskaya, N. Yu. Glazova, E. A. Sebentsova, et al., “Nootropic and anxiolytic effects of the heptapeptide ACTH6–9Pro-Gly-Pro,” Ros. Fiziol. Zh., 105, No. 6, 761–770 (2019).

    Article  Google Scholar 

  13. D. M. Manchenko, N. Yu. Glazova, N. G. Levitskaya, “Nootropic and analgesic effects of Semax given by different routes of administration,” Ros. Fiziol. Zh., 96, No. 10, 1014–1023 (2010).

    CAS  Google Scholar 

  14. K. V. Shevchenko, I. Y. Nagaev, V. N. Babakov, et al., “Proteolysis of His-Phe-Arg-Trp-Pro-Gly-Pro in the blood and brain of rats in vivo,” Dokl. Biochem. Biophys., 464, 301–304 (2015), https://doi.org/10.1134/S1607672915050087.

    Article  CAS  PubMed  Google Scholar 

  15. T. V. V’yunova, K. V. Shevchenko, V. P. Shevchenko, et al., “Binding of regulatory neuropeptide [3H]Semax labeled in the terminal proline residue to plasma membranes of the rat forebrain,” Neirokhimiya, 23, No. 1, 57–62 (2006).

    Google Scholar 

  16. A. N. Mironov, Guidelines for Preclinical Studies of Medicines. Part 1, Grif i K, Moscow (2012).

  17. M. J. Millan and M. Brocco, “The Vogel conflict test: procedural aspects, γ-aminobutyric acid, glutamate and monoamines,” Eur. J. Pharmacol., 463, 67–96 (2002).

    Article  Google Scholar 

  18. N. G. Levitskaya and A. A. Kamenskii, “The melanocortin system,” Usp. Fiziol. Nauk., 40, No. 1, 44–65 (2009).

    CAS  Google Scholar 

  19. E. R. Duval, A. Javanbakht, and I. Liberzon, “Neural circuits in anxiety and stress disorders: a focused review,” Ther. Clin. Risk Manag., 11, 115–126 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. S. Chaki, S. Ogawa, Y. Toda, et al., “Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents,” Eur. J. Pharmacol., 474, No. 1, 95–101 (2003).

    Article  CAS  Google Scholar 

  21. J. Liu, J. C. Garza, W. Li, and X. Y. Lu, “Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion,” Int. J. Neuropsychopharmacol., 16, No. 1, 105–120 (2013).

    Article  CAS  Google Scholar 

  22. M. Karami Kheirabad, B. Namavar Jahromi, A. Tamadon, et al., “Expression of melanocortin-4 receptor mRNA in male rat hypothalamus during chronic stress,” Int. J. Mol. Cell. Med., 4, No. 3, 182–187 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. I. P. Ashmarin, Biochemistry of the Brain, St. Petersburg (1999).

  24. X. Yia, D. S. Manickama, A. Brynskikhb, and A. V. Kabanova, “Agile delivery of protein therapeutics to CNS,” J. Control. Release, 190, 637–663 (2014).

    Article  Google Scholar 

  25. M. B. Chauhan and N. B. Chauhan, “Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice,” J. Neurol. Neurosurg., 2, No. 1, 9 (2015).

    Article  Google Scholar 

  26. P. D. Shabanov, “Pharmacology of peptide drugs,” Psikhofarmakol. Biol. Narkol., 8, No. 3–4, 2399–2425 (2008).

    CAS  Google Scholar 

  27. I. E. Makarenko, O. I. Avdeeva, G. V. Vanatiev, et al., “Possible pathways and volumes of administration of medicines to laboratory animals,” Mezhdunar. Vestn. Vet., 3, 78–84 (2013).

    Google Scholar 

  28. A. E. Belykh and I. I. Bobyntsev, “Delta sleep-inducing peptide: various biological effects and the mechanisms of their development,” Kursk. Nauchn. Prakt. Vestn. Chelov. Zdorov., 1, 79–90 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dodonova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 3, pp. 283–293, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonova, S.A., Bobyntsev, I.I., Belykh, A.E. et al. Effects of Peptides ACTH6–9 PGP and ACTH4–7-PGP on Anxiety Levels in Rats in Punished and Unpunished Behavior. Neurosci Behav Physi 50, 1203–1208 (2020). https://doi.org/10.1007/s11055-020-01022-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01022-w

Keywords

Navigation