Skip to main content

Advertisement

Log in

Early Sharp Wave Synchronization along the Septo-Temporal Axis of the Neonatal Rat Hippocampus

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

In the neonatal rat hippocampus, the first and predominant pattern of synchronized neuronal network activity is early sharp waves (eSPWs) occurring at a frequency of ~2–4 events per minute. However, how eSPWs are organized longitudinally along the septo-temporal hippocampal axis remains unknown. Using silicone probe recordings from the septal and intermediate segments of the CA1 hippocampus in neonatal rats in vivo we found that eSPWs are highly synchronized longitudinally. The amplitudes of eSPWs in the septal and intermediate segments of the hippocampus were also highly correlated. eSPWs also supported longitudinal synchronization of CA1 multiple unit activity. Spatial-temporal analysis revealed a septal-temporal gradient with more frequent initiation of eSPWs in the septal regions. The speed of eSPW longitudinal propagation attained ~ 250 mm/s. We suggest that longitudinal correlated activity supported by synchronized eSPWs emerges early during postnatal development and may participate in the formation of intrahippocampal connections in the developing hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmetshina, D., Nasretdinov, A., Zakharov, A., et al., “The nature of the sensory input to the neonatal rat barrel cortex,” J. Neurosci., 36, 9922–9932 (2016).

    Article  CAS  Google Scholar 

  • Baram, T. Z. and Snead, O. C., “Bicuculline induced seizures in infant rats: ontogeny of behavioral and electrocortical phenomena,” Dev. Brain Res., 57, 291–295 (1990).

    Article  CAS  Google Scholar 

  • Buhl, D. L. and Buzsaki, G., “Developmental emergence of hippocampal fast-field “ripple” oscillations in the behaving rat pups,” Neuroscience, 134, 1423–1430 (2005).

    Article  CAS  Google Scholar 

  • Buzsaki, G., “Two-stage model of memory trace formation: a role for “noisy” brain states,” Neuroscience, 31, 551–570 (1989).

    Article  CAS  Google Scholar 

  • Buzsaki, G., “Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning,” Hippocampus, 25, 1073–1188 (2015).

    Article  Google Scholar 

  • Chrobak, J. J. and Buzsaki, G., “Selective activation of deep layer (V–VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat,” J. Neurosci., 14, 6160–6170 (1994).

    Article  CAS  Google Scholar 

  • Csicsvari, J., Hirase, H., Mamiya, A., and Buzsaki, G., “Ensemble patterns of hippocampal CA3–CA1 neurons during sharp wave-associated population events,” Neuron, 28, 585–594 (2000).

    Article  CAS  Google Scholar 

  • Gomez-Di Cesare, C. M., Smith, K. L., Rice, F. L., and Swann, J.,W., “Anatomical properties of fast spiking cells that initiate synchronized population discharges in immature hippocampus,” Neuroscience, 75, 83–97 (1996).

  • Karlsson, K. A., Mohns, E. J., di Prisco, G. V., and Blumberg, M. S., “On the co-occurrence of startles and hippocampal sharp waves in newborn rats,” Hippocampus, 16, 959–965 (2006).

    Article  Google Scholar 

  • Khalilov, I., Khazipov, R., Esclapez, M., and Ben-Ari, Y., “Bicuculline induces ictal seizures in the intact hippocampus recorded in vitro,” Eur. J. Pharmacol., 319, R5–R6 (1997).

    Article  CAS  Google Scholar 

  • Khalilov, I., Minlebaev, M., Mukhtarov, M., and Khazipov, R., “Dynamic changes from depolarizing to hyperpolarizing GABAergic actions during giant depolarizing potentials in the neonatal rat hippocampus,” J. Neurosci., 35, 12635–12642 (2015).

    Article  CAS  Google Scholar 

  • Khazipov, R., Zaynutdinova, D., Ogievetsky, E., et al., “Atlas of the postnatal rat brain in stereotaxic coordinates,” Front. Neuroanat., 9, 161 (2015), https://doi.org/10.3389/fnana.2015.00161.

  • Kirmse, K., Hubner, C. A., Isbrandt, D., et al., “GABAergic transmission during brain development: Multiple effects at multiple stages,” Neuroscientist, 24, 36–53 (2018).

    Article  CAS  Google Scholar 

  • Kirmse, K., Kummer, M., Kovalchuk, Y., et al., “GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo,” Nat. Commun., 6, 7750 (2015).

    Article  CAS  Google Scholar 

  • Lamsa, K., Palva, J. M., Ruusuvuori, E., et al., “Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0–P2) rat hippocampus,” J. Neurophysiol., 83, 359–366 (2000).

    Article  CAS  Google Scholar 

  • Leinekugel, X., Khalilov, I., Ben-Ari, Y., and Khazipov, R., “Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro,” J. Neurosci., 18, 6349–6357 (1998).

    Article  CAS  Google Scholar 

  • Leinekugel, X., Khazipov, R., Cannon, R., et al., “Correlated bursts of activity in the neonatal hippocampus in vivo,” Science, 296, 2049–2052 (2002).

    Article  CAS  Google Scholar 

  • Marguet, S. L., Le-Schulte, V. T., Merseburg, A., et al., “Treatment during a vulnerable developmental period rescues a genetic epilepsy,” Nat. Med., 21, 1436–1444 (2015).

    Article  CAS  Google Scholar 

  • Mohns, E. J. and Blumberg, M. S., “Synchronous bursts of neuronal activity in the developing hippocampus: modulation by active sleep and association with emerging gamma and theta rhythms,” J. Neurosci., 28, 10134–10144 (2008).

    Article  CAS  Google Scholar 

  • Mohns, E. J., Karlsson, K. A., and Blumberg, M. S., “Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility,” Eur. J. Neurosci., 26, 2719–2730 (2007).

    Article  Google Scholar 

  • Patel, J., Schomburg, E. W., Berenyi, A., et al., “Local generation and propagation of ripples along the septotemporal axis of the hippocampus,” J. Neurosci., 33, 17029–17041 (2013).

    Article  CAS  Google Scholar 

  • Suzuki, S. S. and Smith, G. K., “Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony,” Electroencephalogr. Clin. Neurophysiol., 67, 348–359 (1987).

    Article  CAS  Google Scholar 

  • Valeeva, G., Abdullin, A., Tyzio, R., et al., “Temporal coding at the immature depolarizing GABAergic synapse,” Front. Cell. Neurosci., 4 (2010).

  • Valeeva, G., Janackova, S., Nasretdinov, A., et al., “Emergence of coordinated activity in the developing entorhinal-hippocampal network,” Cereb. Cortex, 29, 906–920 (2019a).

    Article  Google Scholar 

  • Valeeva, G., Nasretdinov, A., Rychkova, V., and Khazipov, R., “Bilateral synchronization of hippocampal early sharp waves in neonatal rats,” Front. Cell. Neurosci., 13, 29 (2019b).

  • Valeeva, G., Tressard, T., Mukhtarov, M., et al., “An optogenetic approach for investigation of excitatory and inhibitory network GABA actions in mice expressing channelrhodopsin-2 in GABAergic neurons,” J. Neurosci., 36, 5961–5973 (2016).

    Article  CAS  Google Scholar 

  • Ylinen, A., Bragin, A., Nadasdy, Z., et al., “Sharp wave associated high-frequency oscillation (200Hz) in the intact hippocampus: network and intracellular mechanisms,” J. Neurosci., 15, 30–46 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khazipov.

Additional information

Published in Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 341–350, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeeva, G., Rychkova, V., Vinokurova, D. et al. Early Sharp Wave Synchronization along the Septo-Temporal Axis of the Neonatal Rat Hippocampus. Neurosci Behav Physi 50, 1195–1202 (2020). https://doi.org/10.1007/s11055-020-01021-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01021-x

Keywords

Navigation