Skip to main content
Log in

Neurophysiological Characteristics of Patients with Juvenile Schizophrenia at the Late Follow-Up Stage

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objective. To determine the neurophysiological features of schizophrenia at late (more than 20 years) follow- up and identify correlations between neurophysiological indicators and the clinical characteristics of the disease. Materials and methods. Patients of three groups were studied: those with a predominance of personality changes (group 1, 17 patients), those with negative disorders (group 2, 23 patients), and those with marked positive and negative disorders (group 3, 40 patients). The main study methods were psychopathological and neurophysiological, with assessment of event-linked potentials. Results and conclusions. A statistically significantly greater θ-rhythm frequency and a significantly lower α-rhythm frequency were found in group 3, the dominant frequency of the θ rhythm showing a correlation (positive) with the total score for positive disorders on the PANSS. No statistically significant between-group differences were seen in measures of the P300 wave of auditory event-related potential recorded in the oddball paradigm. These results are considered in the framework of views of the role of θ activity as a marker for hippocampal-prefrontal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Livanov, “EEG rhythms and their functional significance,” Zh. Vyssh. Nerv. Deyat., 34, No. 4, 613–626 (1984).

    CAS  Google Scholar 

  2. T. Inouye, K. Shinosaki, A. Yagasaki, and A. Shimizu, “Spatial distribution of generation of alpha activity,” Electroencephalogr. Clin. Neurophysiol., 63, 353–360 (1986), https://doi.org/10.1016/0013-4694(86)90020-9.

    Article  CAS  PubMed  Google Scholar 

  3. D. Daniel and R. Schacter, “EEG theta waves and psychological phenomena: a review and analysis,” Biol. Psychol., 5, No. 1, 47–82 (1977), https://doi.org/10.1016/0301-0511(77)90028-x.

    Article  Google Scholar 

  4. D. E. Arnolds, F. H. Lopes da Silva, J. W. Aitink, et al., “The spectral properties of hippocampal EEG related to behaviour in man,” Electroencephalogr. Clin. Neurophysiol., 50, No. 3–4, 324–328 (1980), https://doi.org/10.1016/0013-4694(80)90160-1.

  5. W. Ray and H. Cole, “EEG alpha activity reflects attentional demands and beta activity reflects emotional and cognitive processes,” Science, 228, 4700:750–752 (1985), https://doi.org/10.1126/science.3992243.

    Article  CAS  PubMed  Google Scholar 

  6. I. V. Moskalenko, “Experimental studies of the fine structure of the human EEG spectrum in the α range,” in: Psychophysiological Patterns of Perception and Memory (1985).

  7. Y. Mizuki, “Frontal lobe: mental functions and EEG,” Am. J. EEG Technol., 27, No. 2, 91–101 (1987), https://doi.org/10.1080/00029238.1987.11080219.

    Article  Google Scholar 

  8. R. Bosel, A. Mecklinger, and R. Stolpe, “Changes in spontaneous EEG activity indicate a special kind of information processing in concept learning,” Biol. Psychol., 31, 257–269 (1990), https://doi.org/10.1016/0301-0511(90)90038-x.

    Article  CAS  PubMed  Google Scholar 

  9. R. Morstyn, F. Duffy, and R. McCarley, “Altered topography of EEG spectral content in schizophrenia,” Electroencephalogr. Clin. Neurophysiol., 56, No. 4, 263–271 (1983), https://doi.org/10.1016/0013-4694(83)90251-1.

    Article  CAS  PubMed  Google Scholar 

  10. J. Morihisa, “Computerized topographic mapping of electrophysiologic data in psychiatry,” Psychiat. Ann., 15, No. 4, 240–253 (1985), https://doi.org/10.3928/0048-5713-19850401-10.

  11. T. Miyauchi, K. Tanaka, H. Hagino, et al., “Computerized EEG in schizophrenic patients,” Biol. Psychiatry, 26, 6:488–494 (1990), https://doi.org/10.1016/0006-3223(90)90482-h.

  12. C. Karson, R. Coppola, and J. Morhisa, “Computed EEG activity mapping in schizophrenia. The resting state reconsidered,” Arch. Gen. Psychiatry, 44, No. 6, 514–517 (1987), https://doi.org/10.1001/archpsyc.1987.01800180027004.

    Article  CAS  PubMed  Google Scholar 

  13. P. Etevenon, P. Peron-Magnan, P. Rioux, et al., “Schizophrenia assessed by computerized EEG,” Adv. Biol. Psychiatry, 6, 29–34 (1981), https://doi.org/10.1159/000400068.

  14. J. Small, V. Milstein, P. Sharpley, et al., “Electroencephalographic findings in relation to diagnostic constructs in psychiatry,” Biol. Psychiatry, 19, 4:471–487 (1984).

    CAS  PubMed  Google Scholar 

  15. K. Lifshitz, L. Lee Kai, and S. Susswein, “Long-term replicability of EEG-spectra and auditory evoked potentials in schizophrenic and normal subjects,” Neuropsychobiology, 18, No. 4, 205–211 (1987), https://doi.org/10.1159/000118419.

    Article  CAS  PubMed  Google Scholar 

  16. T. M. Itil, “Qualitative and quantitative EEG findings in schizophrenia,” Schizophr. Bull., 3, No. 1, 61–79 (1977), https://doi.org/10.1093/schbul/3.1.61.

    Article  CAS  PubMed  Google Scholar 

  17. S. Galderisi, A. Mucci, M. L. Mignone, et al., “CEEG mapping in drug free schizophrenics. Differences from healthy subjects and changes induced by haloperidol treatment,” Schizophr. Res., 6, No. 1, 15–23 (1991), https://doi.org/10.1016/0920-9964(91)90016-k.

  18. T. Frodl, E. M. Meisenzahl, J. Gallinat, et al., “Markers from event-related potential subcomponents and reaction time for information processing dysfunction in schizophrenia,” Eur. Arch. Psychiatry Clin. Neurosci., 248, No. 6, 307–313 (1998).

    Article  CAS  Google Scholar 

  19. D. Begić, V. Popović-Knapić, J. Grubišin, et al., “Quantitative electroencephalography in schizophrenia and depression,” Psychiatr. Danub., 23, No. 4, 355–362 (2011).

    PubMed  Google Scholar 

  20. T. S. Mel’nikova, V. V. Sarkisyan, and I. Ya. Gurovich, “Characteristics of the EEG α rhythm in first episodes of paranoid schizophrenia,” Zh. Sotsial. Klin. Psikhiatr., 23, No. 1, 40–45 (2013).

    Google Scholar 

  21. A. Wichniak, Ł. Okruszek, M. Linke, et al., “Electroencephalographic theta activity and cognition in schizophrenia: Preliminary results,” World J. Biol. Psychiatry, 16, No. 3, 206–210 (2015), https://doi.org/10.3109/15622975.2014.966145.

  22. J. W. Kim, Y. S. Lee, D. H. Han, et al., “Diagnostic utility of quantitative EEG in un-medicated schizophrenia,” Neurosci. Lett., 589, 126–131 (2015), https://doi.org/10.1016/j.neulet.2014.12.064.

    Article  CAS  PubMed  Google Scholar 

  23. B. Narayanan, K. O’Neil, C. Berwise, et al., “Resting state electroencephalogram oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on intermediate phenotypes study,” Biol. Psychiatry, 76, No. 6, 456–465 (2014), https://doi.org/10.1016/j.biopsych.2013.12.008.

  24. V. B. Strelets, V. Yu. Novototskii-Vlasov, Zh. V. Garakh, et al., “Multiparametric combinatorial analysis of EEG in health and schizophrenia,” Zh. Vyssh. Nerv. Deyat., 57, No. 6, 684–691 (2007).

    CAS  Google Scholar 

  25. D. H. Mathalon, J. M. Ford, and A. Pfefferbaum, “Trait and state aspects of P300 amplitude reduction in schizophrenia: a retrospective longitudinal study,” Biol. Psychiatry, 47, No. 5, 434–449 (2000), https://doi.org/10.1016/s0006-3223(99)00277-2.

    Article  CAS  PubMed  Google Scholar 

  26. S. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked-potential correlates of stimulus uncertainty,” Science, 150, 187–1188 (1965), https://doi.org/10.1126/science.150.3700.1187.

  27. E. Donchin and M. Coles, “Is the P300 component a manifestation of context updating?” Behav. Brain Sci., 11, 357–374 (1988).

    Article  Google Scholar 

  28. A. M. Ivanitskii, V. B. Strelets, and I. A. Korsakov, Information Processes in the Brain and Mental Activity, Nauka, Moscow (1984).

    Google Scholar 

  29. R. Strandburg, J. Marsh, W. Brown, et al., “Event-related potential correlates of impaired attention in schizophrenic children,” Biol. Psychiatry, 27, 1103–1115 (1990), https://doi.org/10.1016/0006-3223(90)90047-6.

    Article  CAS  PubMed  Google Scholar 

  30. J. Polich, “P300 in clinical application,” in: Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, E. Niedermeyer and F. Lopes da Silva (eds.), Williams & Wilkins, A Waverly Company (1999), 4th ed.

  31. J. Ford, P. White, G. Csernansky, et al., “ERPs in schizophrenia: effects of medication,” Biol. Psychiatry, 36, 153–170 (1994), https://doi.org/10.1016/0006-3223(94)91221-1.

  32. E. Bramon, S. Rabe-Hesketh, P. Sham, et al., “Meta-analysis of the P50 and P300 waveforms in schizophrenia,” Schizophr. Res., 70, No. 2–3, 315–329 (2004), https://doi.org/10.1016/j.schres.2004.01.004.

    Article  PubMed  Google Scholar 

  33. T. Demiralp, A. Ucok, M. Devrim, et al., “N2 and P3 components of event-related potential in first-episode schizophrenic patients: scalp topography, medication, and latency effects,” Psychiatry Res., 111, No. 2–3, 167–179 (2002), https://doi.org/10.1016/s0165-1781(02)00133-6.

    Article  PubMed  Google Scholar 

  34. Y. Hirayasu, N. Asato, H. Ohta, et al., “Abnormalities of auditory event-related potentials in schizophrenia prior to treatment,” Biol. Psychiatry, 43, 244–253 (1998), https://doi.org/10.1016/s0006-3223(97)00275-8.

    Article  CAS  PubMed  Google Scholar 

  35. C. Ogura, Y. Nageishi, M. Matsubayashi, et al., “Abnormalities in event-related potentials: N100, P200, P300 and slow waves in schizophrenia,” Jap. J. Psychiat. Neurol., 45, 57–65 (1991), https://doi.org/10.1111/j.1440-1819.1991.tb00506.x.

    Article  CAS  Google Scholar 

  36. E. A. Kostandov, N. N. Zakharova, T. N. Reshchikova, and V. E. Chakrov, “Impairments to information selection mechanisms in patients with schizophrenia,” Zh. Nevrol. Psikhiatr., 93, 55–58 (1993).

    CAS  Google Scholar 

  37. I. S. Lebedeva, V. A. Orlova, V. G. Kaleda, and M. Ya. Tsutsul’kovskaya, “The P300 of auditory event-related potentials in schizophrenia,” Zh. Nevrol. Psikhiat., 11, 47–49 (2000).

    Google Scholar 

  38. W. Roth, A. Pffeferbaum, T. Horvath, et al., “P3 reduction in auditory evoked potentials of schizophrenics,” Electroencephalogr. Clin. Neurophysiol., 49, 497–505 (1980), https://doi.org/10.1016/0013-4694(80)90392-2.

    Article  CAS  PubMed  Google Scholar 

  39. M. Valkonen-Korhonen, M. Purhonen, I. Tarkha, et al., “Altered auditory processing in acutely psychotic never medicated first episode patients,” Cogn. Brain Res., 17, 747–758 (2003), https://doi.org/10.1016/s0926-6410(03)00199-x.

    Article  Google Scholar 

  40. J. Wang, Y. Hirayashi, K.-I. Hiramatsu, et al., “Increased rate of P300 latency prolongation with age in drug-naive and first episode schizophrenia,” Clin. Neurophysiol., 114, 2029–2035 (2003), https://doi.org/10.1016/s1388-2457(03)00207-4.

    Article  PubMed  Google Scholar 

  41. K. J. Brown, C. J. Gonsalvez, A. W. Harris, et al., “Target and non-target ERP disturbances in first episode, “chronic schizophrenia,” Clin. Neurophysiol., 113, No. 11, 1754–1763 (2002), https://doi.org/10.1016/s1388-2457(02)00290-0.

  42. S. Ranlund, J. Nottage, M. Shaikh, et al., “Resting EEG in psychosis and at-risk populations – a possible endophenotype?” Schizophr. Res., 153, No. 1–3, 96–102 (2014), https://doi.org/10.1016/j.schres.2013.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  43. A. Harris, D. Melkonian, L. Williams, and E. Gordon, “Dynamic spectral analysis findings in first episode and chronic schizophrenia,” Int. J. Neurosci., 116, No. 3, 223–246 (2006), https://doi.org/10.1080/00207450500402977.

    Article  PubMed  Google Scholar 

  44. V. B. Strelets, Magomedov R., Zh. V. Golikova, and V. Yu. Novototskii-Vlasov, “Spectral power and intracortical interactions in the β2 rhythm in health and schizophrenia,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 229–236 (2004).

    CAS  Google Scholar 

  45. B. H. Bland, “The physiology and pharmacology of hippocampal formation theta rhythms,” Prog. Neurobiol., 26, No. 1, 1–54 (1986).

    Article  CAS  Google Scholar 

  46. L. L. Colgin, “Oscillations and hippocampal-prefrontal synchrony,” Curr. Opin. Neurobiol., 21, No. 3, 467–474 (2011), https://doi.org/10.1016/j.conb.2011.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K. Benchenane, P. H. Tiesinga, and F. P. Battaglia, “Oscillations in the prefrontal cortex: a gateway to memory and attention,” Curr. Opin. Neurobiol., 21, No. 3, 475–485 (2011), https://doi.org/10.1016/j.conb.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  48. B. Godsila, J. Kissc, M. Speddingd, and T. Jaya, “The hippocampal-prefrontal pathway: The weak link in psychiatric disorders?” Eur. Neuropsychopharmacol., 23, 1165–1181 (2013), https://doi.org/10.1016/j.euroneuro.2012.10.018.

    Article  CAS  Google Scholar 

  49. B. Pittman-Polletta, B. Kocsis, S. Vijayan, et al., “Brain rhythms connect impaired inhibition to altered cognition in schizophrenia,” Biol. Psychiatry, 77, 1020–1030 (2015), https://doi.org/10.1016/j.biopsych.2015.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  50. J. J. Newson and T. C. Thiagarajan, “EEG frequency bands in psychiatric disorders: A review of resting state studies,” Front. Hum. Neurosci., 12, 521 (2019), https://doi.org/10.3389/fnhum.2018.00521.

    Article  PubMed  PubMed Central  Google Scholar 

  51. A. S. Rommel, G. L. Kitsune, G. Michelini, et al., “Commonalities in EEG spectral power abnormalities between women with ADHD and women with bipolar disorder during rest and cognitive performance,” Brain Topogr., 29, No. 6, 856–866 (2016).

    Article  Google Scholar 

  52. L. Hong, A. Braxton, M. Gunvant, and A. Thaker, “Shared low-frequency oscillatory rhythm abnormality in resting and sensory gating in schizophrenia,” Clin. Neurophysiol., 123, No. 2, 285–292 (2011), https://doi.org/10.1016/j.clinph.2011.07.025.

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. Gross, S. L. Joutsiniemi, R. Rimon, and B. Appelberg, “Clozapine-induced QEEG changes correlate with clinical response in schizophrenic patients: a prospective, longitudinal study,” Pharmacopsychiatry, 37, No. 3, 119–122 (2004), https://doi.org/10.1055/s-2004-818989.

  54. V. K. Bochkarev, A.V. Kirenskaya, A.A. Tkachenko, et al., “Frequency and spatial characteristics of the electroencephalogram in patients with paranoid schizophrenia depending on the severity of productive and negative symptomatology,” Zh. Vyssh. Nerv. Deyat., 115, No. 1, 66–74 (2015), https://doi.org/10.17116/jnevro20151151166-74.

  55. S. Kuhn, F. Musso, A. Mobascher, et al., “Hippocampal subfields predict positive symptoms in schizophrenia: First evidence from brain morphometry,” Transl. Psychiatry, 2, No. 6, e127 (2012), https://doi.org/10.1038/tp.2012.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. T. Sigurdsson and S. Duvarci, “Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease,” Front. Syst. Neurosci., 9, 190 (2016), https://doi.org/10.3389/fnsys.2015.00190.

  57. Y. Mori, S. Kurosu, Y. Hiroyama, and S. Niwa, “Prolongation of P300 latency is associated with the duration of illness in male schizophrenia patients,” Psychiatry Clin. Neurosci., 61, No. 5, 471–478 (2007), https://doi.org/10.1111/j.1440-1819.2007.01695.x.

    Article  PubMed  Google Scholar 

  58. A. Jackson and U. Seneviratne, “EEG changes in patients on antipsychotic therapy: A systematic review,” Epilepsy Behav., 95, 1–9 (2019), https://doi.org/10.1016/j.yebeh.2019.02.005.

    Article  PubMed  Google Scholar 

  59. M. Korostenskaja and S. Kahkonen, “What do ERPs and ERFs reveal about the effect of antipsychotic treatment on cognition in schizophrenia?” Curr. Pharm. Des., 15, No. 22, 2573–2593 (2009), https://doi.org/10.2174/138161209788957474.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lebedeva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 3, Iss. 1, pp. 34–40, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, I.S., Golubev, S.A., Klochkova, I.V. et al. Neurophysiological Characteristics of Patients with Juvenile Schizophrenia at the Late Follow-Up Stage. Neurosci Behav Physi 50, 1140–1145 (2020). https://doi.org/10.1007/s11055-020-01016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01016-8

Keywords

Navigation