Skip to main content

Advertisement

Log in

Investigation of Brain Functions Using Genetically Encoded Tools

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Methods based on genetically encoded molecular constructs such as antisense knockdown and RNA interference, which alter the expression of target genes, are widely used for analyzing the functions of the proteins encoded by these genes; they are also used in medical practice. Use of these methods has established, for example, that even short-term decreases in the expression of one of the noradrenaline receptors during the critical period of brain development leaves a long-lasting trace at the neurochemical and behavioral levels in subsequent life. Delivery to cells of viral constructs encoding any protein influencing cell function or small hairpin RNA (shRNA), which decrease the expression of a target gene, are also used in neurobiology. Optogenetics and chemogenetics provide clear demonstrations of the power of genetically encoded tools in studies of the central nervous system and are tools potentially suitable for controlling brain cell activity with therapeutic purposes. Both approaches are realized via expression in the target cell type of receptors novel for the organism and reacting to light of a specific wavelength or a chemical ligand molecule foreign to the organism. These approaches allow the functional consequences of changes in the activity of a specific population of neurons to be studied, and this has led to significant progress in deciphering the mechanisms of the central regulation of behavior. Thus, optogenetic studies have shown that activation of glutamatergic neurons in the dorsal hippocampus induce depression-like behavior, while the antidepressant effect of ketamine on this behavior is mediated by a direct action of this drug on NMDA receptors. Genome editing and gene expression control methods developed in recent years using bacterial CRISPR/Cas systems have already been used to study brain function. There are now optimistic expectations for the medical use of potential methods of opto- and chemogenetics, as well as CRISPR/Cas technologies, developed in model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sprengel and M. T. Hasan, “Tetracycline-controlled genetic switches,” Handb. Exp. Pharmacol., 178, 49–72 (2007).

    CAS  Google Scholar 

  2. J. A. Harris, K. E. Hirokawa, S. A. Sorensen, et al., “Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation,” Front. Neural Circuits, 8, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. K. M. Schoch and T. M. Miller, “Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases,” Neuron, 94, No. 6, 1056–1070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. R. L. Juliano, “The delivery of therapeutic oligonucleotides,” Nucleic Acids Res., 44, No. 14, 6518–6548 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. N. N. Dygalo, T. S. Kalinina, and D. A. Lanshakov, “Translocation of oligonucleotide-oligosaccharide complexes into cells of the brain,” Dokl. Biochem. Biophys., 479, No. 1, 108–110 (2018).

    CAS  PubMed  Google Scholar 

  6. A. W. Cwetsch, B. Pinto, A. Savardi, and L. Cancedda, “In vivo methods for acute modulation of gene expression in the central nervous system,” Prog. Neurobiol., 168, 69–85 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex,” Neuroscience, 103, No. 4, 865–872 (2001).

    CAS  PubMed  Google Scholar 

  8. S. Palfi, J. M. Gurruchaga, H. Lepetit, et al., “Long-term follow-up of a phase i/ii study of prosavin, a lentiviral vector gene therapy for Parkinson’s disease,” Hum. Gene Ther. Clin. Dev., 29, No. 3, 148–155 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. N. N. Dygalo, T. S. Kalinina, and G. T. Shishkina, “Biological efficacy of antisense oligonucleotides complementary to over-lapping regions of the mRNA target,” Russ. Chem. Bull. (intern. ed.), 51, No. 7, 1031–1034 (2002).

    Google Scholar 

  10. N. K. Sahu, G. Shilakari, A. Nayak, and D. V. Kohli, “Antisense technology: A selective tool for gene expression regulation and gene targeting,” Curr. Pharm. Biotechnol., 8, No. 5, 291–304 (2007).

    CAS  PubMed  Google Scholar 

  11. G. T. Shishkina, T. S. Kalinina, N. Y. Sournina, and N. N. Dygalo, “Effects of antisense to the (alpha)2A-adrenoceptors administered into the region of the locus ceruleus on behaviors in plus-maze and sexual behavior tests in sham-operated and castrated male rats,” J. Neurosci., 21, No. 2, 726–731 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. R. S. Finkel, C. A. Chiriboga, J. Vajsar, et al., “Treatment of infantile- onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study,” Lancet, 388, No. 10063, 3017–3026 (2016).

    CAS  PubMed  Google Scholar 

  13. E. Mercuri, B. T. Darras, C. A. Chiriboga, et al., and the CHERISH Study Group, “Nusinersen versus sham control in later-onset spinal muscular atrophy,” New Engl. J. Med., 378, No. 7, 625–635 (2018).

  14. S. M. Elbashir, J. Harborth, W. Lendeckel, et al., “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells,” Nature, 411, No. 6836, 494–498 (2001).

    CAS  PubMed  Google Scholar 

  15. A. Reynolds, D. Leake, Q. Boese, et al., “Rational siRNA design for RNA interference,” Nat. Biotechnol., 22, No. 3, 326–330 (2004).

    CAS  PubMed  Google Scholar 

  16. G. T. Shishkina, T. S. Kalinina, and N. N. Dygalo, “Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood,” Neuroscience, 129, No. 3, 521–528 (2004).

    CAS  PubMed  Google Scholar 

  17. N. N. Dygalo, T. S. Kalinina, and G. T. Shishkina, “Neonatal programming of rat behavior by downregulation of alpha2A-adrenoreceptor gene expression in the brain,” Ann. N. Y. Acad. Sci., 1148, 409–414 (2008).

    PubMed  Google Scholar 

  18. E. Wyszko, K. Rolle, S. Nowak, et al., “A multivariate analysis of patients with brain tumors treated with ATN-RNA,” Acta Pol. Pharm., 65, No. 6, 677–684 (2008).

    PubMed  Google Scholar 

  19. D. Adams, A. Gonzalez-Duarte, W. D. O’Riordan, et al., “Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis,” New Engl. J. Med., 379, No. 1, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  20. E. Sarno and A. J. Robison, “Emerging role of viral vectors for circuit- specific gene interrogation and manipulation in rodent brain,” Pharmacol. Biochem. Behav., 174, 2–8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. D. M. McCarty, S. M. Young, Jr., and R. J. Samulski, “Integration of adeno-associated virus (AAV) and recombinant AAV vectors,” Annu. Rev. Genet., 38, 819–845 (2004).

    CAS  PubMed  Google Scholar 

  22. K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nature Rev. Neurosci., 13, 251–266 (2012).

    CAS  Google Scholar 

  23. M. M. M. Verheij, C. Contet, P. Karel, et al., “Median and dorsal raphe serotonergic neurons control moderate versus compulsive cocaine intake,” Biol. Psychiatry, 83, 1024–1035 (2018).

    CAS  PubMed  Google Scholar 

  24. S. Gong, M. Doughty, C. R. Harbaugh, et al., “Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs,” J. Neurosci., 27, No. 37, 9817–9823 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. M. S. Song and J. J. Rossi, “Molecular mechanisms of Dicer: Endonuclease and enzymatic activity,” Biochem. J., 474, No. 10, 1603–1618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. C. G. Toro and C. Mueller, “Design of shRNA and miRNA for delivery to the CNS,” Methods Mol. Biol., 1382, 67–80 (2016).

    Google Scholar 

  27. K. Albert, M. H. Voutilainen, A. Domanskyi, and M. Airavaara, “AAV vector-mediated gene delivery to substantia nigra dopamine neurons: Implications for gene therapy and disease models,” Genes (Basel), 8, No. 2, 63 (2017).

    Google Scholar 

  28. A. Chtarto, O. Bockstael, T. Tshibangu, et al., “A next step in adeno-associated virus-mediated gene therapy for neurological diseases: Regulation and targeting,” Br. J. Clin. Pharmacol., 76, No. 2, 217–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. A. T. Das, L. Tenenbaum, and B. Berkhout, “Tet-on systems for doxycycline- inducible gene expression,” Curr. Gene Ther., 16, No. 3, 156–167 (2016).

    Google Scholar 

  30. G. T. Shishkina, D. A. Lanshakov, A. V. Bannova, et al., “Doxycycline used for control of transgene expression has its own effects on behaviors and Bcl-xl in the rat hippocampus,” Cell. Mol. Neurobiol., 38, No. 1, 281–288 (2018).

    CAS  PubMed  Google Scholar 

  31. J. Nishiyama, “Genome editing in the mammalian brain using the CRISPR-Cas system,” Neurosci. Res., 141, 4–12 (2019).

  32. E. Senis, C. Fatouros, S. Grosse, et al., “CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox,” Biotechnol. J., 9, 1402–1412 (2014).

    CAS  PubMed  Google Scholar 

  33. L. Swiech, M. Heidenreich, A. Banerjee, et al., “In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9,” Nat. Biotechnol., 33, 102–106 (2015).

    CAS  PubMed  Google Scholar 

  34. J. D. Sander and J. K. Jong, “CRISPR-Cas systems for editing, regulating and targeting genomes,” Nat. Biotechnol., 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. C. Straub, A. J. Granger, J. L. Saulnier, and B. L. Sabatini, “CRISPR/ Cas9-mediated gene knock-down in post-mitotic neurons,” PLoS One, 9, e105584 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. A. Chavez, J. Scheiman, S. Vora, et al., “Highly efficient Cas9- mediated transcriptional programming,” Nat. Methods, 12, 326–32 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. C. H. Lau, J. W. Ho, P. K. Lo, and C. Tin, “Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa,” Mol. Ther. Nucl. Acids, 16, 637–649 (2019).

    CAS  Google Scholar 

  38. K. E. Savell and J. J. Day, “Applications of CRISPR/Cas9 in the mammalian central nervous system,” Yale J. Biol. Med., 90, No. 4, 567–581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. E. S. Boyden, F. Zhang, E. Bamberg, et al., “Millisecond timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  40. C. M. Gremel and R. M. Costa, “Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions,” Nat. Commun., 4, 2264 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci., 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. S. M. Sternson and B. L. Roth, “Chemogenetic tools to interrogate brain functions,” Annu. Rev. Neurosci., 37, 387–407 (2014).

    CAS  PubMed  Google Scholar 

  43. D. J. Urban and B. L. Roth, “DREADDs (designer receptors exclusively activated by designer drugs, chemogenetic tools with therapeutic utility,” Annu. Rev. Pharmacol. Toxicol., 55, 399–417 (2015).

  44. N. N. Dygalo and G. T. Shishkina, “Optogenetic approach in investigations of pathophysiology and therapy of depression,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 32–40 (2017).

    Google Scholar 

  45. N. N. Dygalo, D. A. Lanshakov, U. S. Drozd, et al., “Optogenetic activation of the CA1 hippocampal pyramidal neurons induces a depressive-like behavioral phenotype,” Eur. Neuropsychopharmacol., 26, Supplement 2, S277–S278 (2016).

  46. D. A. Lanshakov, U. S. Drozd, and N. N. Dygalo, “Optogenetic stimulation increases level of antiapoptotic protein Bcl-xL in neurons,” Biochemistry (Mosc.), 82, No. 3, 340–344 (2017).

    CAS  Google Scholar 

  47. S. M. Sternson and B. L. Roth, “Chemogenetic tools to interrogate brain functions,” Annu. Rev. Neurosci., 37, 387–407 (2014).

    CAS  PubMed  Google Scholar 

  48. E. J. Campbell and N. J. Marchant, “The use of chemogenetics in behavioural neuroscience: Receptor variants, targeting approaches and caveats,” Br. J. Pharmacol., 175, No. 7, 994–1003 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Yun, R. P. Reynolds, I. Petrof, et al., “Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive,” Nat. Med., 24, No. 5, 658–666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. R. S. Duman, G. Sanacora, and J. H. Krystal, “Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments,” Neuron, 102, No. 1, 75–90 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Dygalo.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 11, pp. 1381–1391, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dygalo, N.N. Investigation of Brain Functions Using Genetically Encoded Tools. Neurosci Behav Physi 50, 1051–1056 (2020). https://doi.org/10.1007/s11055-020-01004-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01004-y

Keywords

Navigation