Skip to main content
Log in

Experimental Studies of the Effects of the Dopamine D2 Receptor Agonist Cabergoline on Catecholamine Content and BDNF mRNA Expression in the Midbrain and Hypothalamus

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To study the effects of cabergoline on the catecholamine content and brain-derived neurotrophic factor (BDNF) mRNA expression in the midbrain and hypothalamus. Materials and methods. Experiments were performed on 20 adult male Wistar rats. Animals of the experimental group (n = 10) received i.p. cabergoline (0.5 mg/kg). Control animals (n = 10) received the same volume of solvent. Dopamine and noradrenaline contents were measured by high-performance liquid chromatography with electrochemical detection and the relative BDNF mRNA level was analyzed using the real-time polymerase chain reaction after reverse transcription. Results and conclusions. Administration of cabergoline was followed 24 h later by a significant increase in the noradrenaline content in the midbrain of animals of the experimental group as compared with the control group (639.2 ± 64.5 ng/g vs. 398.0 ± 66.0 ng/g, p < 0.05), while there was no change in the dopamine level (211.4 ± 16.3 ng/g vs. 169.7 ± 54.6 ng/g). No Changes in transmitter contents in the hypothalamus were seen. Administration of cabergoline led to a two-fold increase in the BDNF mRNA level in the midbrain but not in the hypothalamus at 24 h after injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Curran and C. M. Perry, “Cabergoline: a review of its use in the treatment of Parkinson’s disease,” Drugs, 64, No. 18, 2125–2141 (2004), https://doi.org/10.2165/00003495-200464180-00015.

    Article  CAS  PubMed  Google Scholar 

  2. H. Scholz, C. Trenkwalder, R. Kohnen, et al., “Dopamine agonists for restless legs syndrome,” Cochrane Database Syst. Rev., 16, No. 3, CD006009 (2011), https://doi.org/10.1002/14651858.CD006009.pub2.

    Article  Google Scholar 

  3. R. Feelders and L. Hofl and, “Medical treatment of Cushing’s disease,” J. Clin. Endocrinol. Metab., 98, No. 2, 425–438 (2013), https://doi.org/10.1210/jc.2012-3126.

    Article  CAS  PubMed  Google Scholar 

  4. A. Wang, R. Mullan, A. Lane, et al., “Treatment of hyperprolactinemia: a systematic review and meta-analysis,” Syst. Rev., 1, No. 1 (2012), https://doi.org/10.1186/2046-4053-1-33.

  5. H. Reichmann, A. Bilsing, R. Ehret, et al., “Ergoline and non-ergoline derivatives in the treatment of Parkinson’s disease,” J. Neurol., 253, No. 4, 36–38 (2006), https://doi.org/10.1007/s00415-006-4009-z.

    Article  CAS  Google Scholar 

  6. I. Yu. Shamakina, T. V. Proskuryakova, V. A. Shokhonova, et al., “Effects of cabergoline on alcohol consumption and expression of the DRD2 gene in the brain of rats with chronic alcohol intoxication,” Zh. Nevrol. Psikhiat., 116, No. 11-2, 74–80 (2016), https://doi.org/10.17116/jnevro201611611274-80.

    Article  Google Scholar 

  7. S. Carnicella, S. Ahmadiantehrani, D. He, et al., “Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor,” Biol. Psychiatry, 66, No. 2, 146–153 (2009), https://doi.org/10.1016/j.biopsych.2008.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Chiba, T. Numakawa, M. Ninomiya, et al., “Cabergoline, a dopamine receptor agonist, has an antidepressant-like property and enhances brain-derived neurotrophic factor signaling,” Psychopharmacology (Berlin), 211, No. 3, 291–301 (2010), https://doi.org/10.1007/s00213-010-1894-8.

    Article  CAS  Google Scholar 

  9. Yu. P. Sivolap, “Treatment of anxiety disorders in patients with alcohol abuse,” Zh. Nevrol. Psikhiat., 118, No. 1, 34 (2018), https://doi.org/10.17116/jnevro20181181234-38.

    Article  Google Scholar 

  10. Yu. P. Sivolap, “Alcohol consumption-associated disorders: new approaches to diagnosis and treatment,” Zh. Nevrol. Psikhiat., 115, No. 9, 23 (2015), https://doi.org/10.17116/jnevro20151159123-27.

    Article  Google Scholar 

  11. P. L. Delgado, “Depression: the case for a monoamine deficiency,” J. Clin. Psychiatry, 61, No. 6, 7–11 (2000).

    CAS  PubMed  Google Scholar 

  12. R. Duman, and L. Monteggia, “A Neurotrophic model for stress-related mood disorders,” Biol. Psychiatry, 59, No. 12, 1116–1127 (2006), https://doi.org/10.1016/j.biopsych.2006.02.013.

    Article  CAS  PubMed  Google Scholar 

  13. C. Björkholm and L. Monteggia, “BDNF – a key transducer of antidepressant effects,” Neuropharmacology, 102, No. 72–79 (2016), https://doi.org/10.1016/j.neuropharm.2015.10.034.

  14. Y. Shirayama, A. Chen, S. Nakagawa, et al., “Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression,” J. Neurosci., 22, No. 8, 3251–3261 (2002), https://doi.org/10.1523/jneurosci.22-08-03251.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Adachi, M. Barrot, A. Autry, et al., “Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy,” Biol. Psychiatry, 63, No. 7, 642–649 (2008), https://doi.org/10.1016/j.biopsych.2007.09.019.

    Article  CAS  PubMed  Google Scholar 

  16. T. Rantamäki, P. Hendolin, A. Kankaanpää, et al., “Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cγ signaling pathways in mouse brain,” Neuropsychopharmacology, 32, No. 10, 2152–2162 (2007), https://doi.org/10.1038/sj.npp.1301345.

    Article  CAS  PubMed  Google Scholar 

  17. J. Murínová, N. Hlaváčová, M. Chmelová, and I. Riečanský, “The evidence for altered BDNF expression in the brain of rats reared or housed in social isolation: A systematic review,” Front. Behav. Neurosci., 11 (2017), https://doi.org/10.3389/fnbeh.2017.00101.

  18. A. J. Eisch, C. A. Bolaños, J. de Wit, et al., “Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression,” Biol. Psychiatry, 54, No. 10, 994–1005 (2003), https://doi.org/10.1016/s0006-3223(03)00869-2.

    Article  CAS  PubMed  Google Scholar 

  19. O. Berton, “Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress,” Science, 311, No. 5762, 864–868 (2006), https://doi.org/10.1126/science.1120972.

    Article  CAS  PubMed  Google Scholar 

  20. C. P. Ford, “The role of D2-autoreceptors in regulating dopamine neuron activity and transmission,” Neuroscience, 282, No. 13–22 (2014), https://doi.org/10.1016/j.neuroscience.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  21. J. Cordeira, L. Frank, M. Sena-Esteves, et al., “Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system,” J. Neurosci., 30, No. 7, 2533–2541 (2010), https://doi.org/10.1523/jneurosci.5768-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. I. Davis, “Ethanol-BDNF interactions: still more questions than answers,” Pharmacol. Ther., 118, No. 1, 36–57 (2008), https://doi.org/10.1016/j.pharmthera.2008.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. A. M. Krstulovic (ed.), Quantitative Analysis of Catecholamines and Related Compounds, Ellis Horwood Limited, Chichester, England (1986); Biol. Mass Spectrom., 15, No. 7, 411–411 (1988), https://doi.org/10.1002/bms.1200150709.

  24. T. Schmittgen and K. Livak, “Analyzing real-time PCR data by the comparative CT method,” Nat. Protoc., 3, No. 6, 1101–1108 (2008), https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Rossetti, L. Pani, C. Portas, and G. Gessa, “Brain dialysis provides evidence for D2-dopamine receptors modulating noradrenaline release in the rat frontal cortex,” Eur. J. Pharmacol., 163, No. 2–3, 393–395 (1989), 10.1016/0014-2999(89)90214-8.

  26. A. M. Galzin, M. L. Dubocovich, and S. Z. Langer, “Presynaptic inhibition by dopamine receptor agonists of noradrenergic neurotransmission in the rabbit hypothalamus,” J. Pharmacol. Exp. Ther., 221, No. 461 (1982).

  27. Y. Misu, Y. Goshima, and T. Kubo, “Biphasic actions of l-DOPA on the release of endogenous dopamine via presynaptic receptors in rat striatal slices,” Neurosci. Lett., 72, No. 2, 194–198 (1986), https://doi.org/10.1016/0304-3940(86)90079-0.

    Article  CAS  PubMed  Google Scholar 

  28. B. Guiard, M. El Mansari, and P. Blier, “Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus,” Mol. Pharmacol., 74, No. 5, 1463–1475 (2008), https://doi.org/10.1124/mol.108.048033.

    Article  CAS  PubMed  Google Scholar 

  29. A. Lee, A. Wissekerke, D. Rosin, and K. Lynch, “Localization of α2c-adrenergic receptor immunoreactivity in catecholaminergic neurons in the rat central nervous system,” Neuroscience, 84, No. 4, 1085–1096 (1998), https://doi.org/10.1016/s0306-4522(97)00578-2.

    Article  CAS  PubMed  Google Scholar 

  30. B. Guiard, M. El Mansari, Z. Merali, and P. Blier, “Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions,” Int. J. Neuropsychopharmacol., 11, No. 5, 625–639 (2008), https://doi.org/10.1017/s1461145707008383.

    Article  CAS  PubMed  Google Scholar 

  31. L. Linnér, H. Endersz, D. Ohman, et al., “Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex,” J. Pharmacol. Exp. Ther., 297, No. 540–546 (2001).

    Google Scholar 

  32. K. Ornstein, H. Milon, A. McRae-Degueurce, et al., “Biochemical and radioautographic evidence for dopaminergic afferents of the locus coeruleus originating in the ventral tegmental area,” J. Neural. Transm. (Vienna), 70, No. 3–4, 183–191 (1987), https://doi.org/10.1007/bf01253597.

    Article  CAS  Google Scholar 

  33. C. Yokoyama, H. Okamura, T. Nakajima, et al., “Autoradiographic distribution of [3H]YM-09151-2, a high-affinity and selective antagonist ligand for the dopamine D2 receptor group, in the rat brain and spinal cord,” J. Comp. Neurol., 344, No. 1, 121–136 (1994), https://doi.org/10.1002/cne.903440109.

    Article  CAS  PubMed  Google Scholar 

  34. K. Del Tredici and H. Braak, “Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia,” J. Neurol. Neurosurg. Psychiatry, 84, No. 7, 774–783 (2012), https://doi.org/10.1136/jnnp-2011-301817.

    Article  PubMed  Google Scholar 

  35. V. Kokhan, T. Kokhan, A. Samsonova, et al., “The dopaminergic dysfunction and altered working memory performance of aging mice lacking gamma-synuclein gene,” CNS Neurol. Disord. Drug Targets, 17 (2018), https://doi.org/10.2174/1871527317666180726095734.

  36. V. Kokhan, G. Van’kin, S. Bachurin, and I. Shamakina, “Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice,” BMC Neurosci., 14, No. 1, 53 (2013), https://doi.org/10.1186/1471-2202-14-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. H. Odaka, T. Numakawa, N. Adachi, et al., “Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity,” PLoS One, 9, No. 6, e99271 (2014), https://doi.org/10.1371/journal.pone.0099271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Salim, “Oxidative Stress and the Central Nervous System,” J. Pharmacol. Exp. Ther., 360, No. 1, 201–205 (2016), https://doi.org/10.1124/jpet.116.237503.

    Article  CAS  PubMed  Google Scholar 

  39. J. Haorah, S. H. Ramirez, N. Floreani, et al., “Mechanism of alcohol-induced oxidative stress and neuronal injury,” Free Radic. Biol. Med., 45, No. 11, 1542–1550 (2008), https://doi.org/10.1016/j.freeradbiomed.2008.08.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. Benarroch, “The locus ceruleus norepinephrine system: Functional organization and potential clinical signifi cance,” Neurology, 73, No. 20, 1699–1704 (2009), https://doi.org/10.1212/wnl.0b013e3181c2937c.

    Article  PubMed  Google Scholar 

  41. K. Rommelfanger, D. Weinshenker, and G. Miller, “Reduced MPTP toxicity in noradrenaline transporter knockout mice,” J. Neurochem., 91, No. 5, 1116–1124 (2004), https://doi.org/10.1111/j.1471-4159.2004.02785.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Anokhin.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 119, No. 11, Iss. 1, pp. 54–59, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhin, P.K., Veretinskaya, A.G., Pavshintsev, V.V. et al. Experimental Studies of the Effects of the Dopamine D2 Receptor Agonist Cabergoline on Catecholamine Content and BDNF mRNA Expression in the Midbrain and Hypothalamus. Neurosci Behav Physi 50, 830–834 (2020). https://doi.org/10.1007/s11055-020-00974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00974-3

Keywords

Navigation