Skip to main content

Advertisement

Log in

Glutamate Transporters (EAAT-1–3) as a Factor in the Pathogenesis and a Potential Therapeutic Target in Epilepsy

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Epilepsy is one of the commonest neurological diseases, though convulsive seizures cannot be completely cured in 30% of patients, such that there is a need to develop new pharmacological approaches to its treatment. In some pathological states, including drug-resistant forms of epilepsy, the mechanisms removing glutamate from the synaptic cleft may be impaired, so one potential approach to these pathological states may be associated with actions on glutamate transporters. The present review analyzes contemporary data on changes in the expression of excitatory amino acid transporter proteins (EAAT) in human epilepsy and in animal models of convulsive states and epilepsy. Mechanisms of actions on the expression and activity of transporters as potential therapeutic targets for the treatment of convulsive states are considered, special attention being paid to analysis of the use of the antibiotic ceftriaxone, which increases the expression and activity of EAAT-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Meyer, T. Dua, J. Ma, et al., “Global disparities in the epilepsy treatment gap: a systematic review,” Bull. World Health Organ., 88, No. 4, 260–266 (2010).

    Article  PubMed  Google Scholar 

  2. S. L. Moshe, E. Perucca, P. Ryvlin, and T. Tomson, “Epilepsy: New advances,” Lancet, 385, No. 9971, 884–898 (2015).

    Article  PubMed  Google Scholar 

  3. W. Loscher, H. Klitgaard, R. E. Twyman, and D. Schmidt, “New avenues for anti-epileptic drug discovery and development,” Nat. Rev. Drug Discov., 12, No. 10, 757–776 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. M. Barker-Haliski and H. S. White, “Glutamatergic Mechanisms Associated with Seizures and Epilepsy,” Cold Spring Harb. Perspect. Med., 5, No. 8, a022863 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. S. F. Traynelis, L. P. Wollmuth, C. J. McBain, et al., “Glutamate receptor ion channels: Structure, regulation, and function,” Pharmacol. Rev., 62, No. 3, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Albrecht and M. Zielinska, “Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy,” Neurochem. Res., 42, No. 6, 1724–1734 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. T. Eid, S. E. Gruenbaum, R. Dhaher, et al., “The glutamate-glutamine cycle in epilepsy,” Adv. Neurobiol., 13, 351–400 (2016).

    Article  PubMed  Google Scholar 

  8. M. Bouvier, M. Szatkowski, A. Amato, and D. Attwell, “The glial cell glutamate uptake carrier countertransports pH-changing anions,” Nature, 360, No. 6403, 471–474 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. H. Benveniste, J. Drejer, A. Schousboe, and N. H. Diemer, “Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis,” J. Neurochem., 43, No. 5, 1369–1374 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. A. Lehmann, H. Isacsson, and A. Hamberger, “Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus,” J. Neurochem., 40, No. 5, 1314–1320 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. M. J. During and D. D. Spencer, “Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain,” Lancet, 341, No. 8861, 1607–1610 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. I. Cavus, W. S. Kasoff, M. P. Cassaday, et al., “Extracellular metabolites in the cortex and hippocampus of epileptic patients,” Ann. Neurol., 57, No. 2, 226–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. M. H. Millan, A. G. Chapman, and B. S. Meldrum, “Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures,” Epil. Res., 14, No. 2, 139–148 (1993).

    Article  CAS  Google Scholar 

  14. J. Szyndler, P. Maciejak, D. Turzynska, et al., “Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats,” Neurosci. Lett., 439, No. 3, 245–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. F. Pena, and R. Tapia, “Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: Role of glutamate- and GABA-mediated neurotransmission and of ion channels,” Neuroscience, 101, No. 3, 547–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. K. Kanamori and B. D. Ross, “Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain,” Brain Res., 1371, 180–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. A. Meurs, R. Clinckers, G. Ebinger, et al., “Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin,” Epil. Res., 78, No. 1, 50–59 (2008).

    Article  CAS  Google Scholar 

  18. I. Smolders, G. M. Khan, J. Manil, et al., “NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis,” Br. J. Pharmacol., 121, No. 6, 1171–1179 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. During and D. Spencer, “Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain,” Lancet, 341, No. 8861, 1607–1610 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. P. Thomas, J. Phillips, N. Delanty, and W. O’Connor, “Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus,” Epil. Res., 54, No. 1, 73–79 (2003).

    Article  CAS  Google Scholar 

  21. E. M. Urbanska, S. J. Czuczwar, Z. Kleinrok, and W. A. Turski, “Excitatory amino acids in epilepsy,” Restor. Neurol. Neurosci., 13, No. 1, 2, 25–39 (1998).

    Google Scholar 

  22. E. Pajarillo, A. Rizor, J. Lee, et al., “The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics,” Neuropharmacology, 161, 107559 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. K. Tanaka, “Cloning and expression of a glutamate transporter from mouse brain,” Neurosci. Lett., 159, No. 1, 183–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. G. Pines, N. C. Danbolt, M. Bjoras, et al., “Cloning and expression of a rat brain L-glutamate transporter,” Nature, 360, No. 6403, 464 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Kanai and M. A. Hediger, “Primary structure and functional characterization of a high-affi nity glutamate transporter,” Nature, 360, No. 6403, 467 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. W. Fairman, R. Vandenberg, J. Arriza, et al., “An excitatory amino-acid transporter with properties of a ligand-gated chloride channel,” Nature, 375, No. 6532, 599 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. J. L. Arriza, S. Eliasof, M. P. Kavanaugh, and S. G. Amara, “Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance,” Proc. Natl. Acad. Sci. USA, 94, No. 8, 4155–4160 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. P. Lehre, L. M. Levy, O. P. Ottersen, et al., “Differential expression of two glial glutamate transporters in the rat brain: Quantitative and immunocytochemical observations,” J. Neurosci., 15, No. 3, 1835–1853 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Karki, E. Lee, and M. Aschner, “Manganese neurotoxicity: A focus on glutamate transporters,” Ann. Occup. Environ. Med., 25, No. 1, 4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. G. M. Parkin, M. Udawela, A. Gibbons, and B. Dean, “Glutamate transporters, EAAT1 and EAAT2, and J. are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders,” World Psychiatry, 8, No. 2, 51–63 (2018).

    Article  Google Scholar 

  31. A. Schmitt, E. Asan, K. P. Lesch, and P. Kugler, “A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: Cloning and localization in rat nervous system,” Neuroscience, 109, No. 1, 45–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. W. Chen, V. Mahadomrongkul, U. V. Berger, et al., “The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons,” J. Neurosci., 24, No. 5, 1136–1148 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. D. Rothstein, L. Martin, A. I. Levey, et al., “Localization of neuronal and glial glutamate transporters,” Neuron, 13, No. 3, 713–725 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. W. E. Bjorn-Yoshimoto and S. M. Underhill, “The importance of the excitatory amino acid transporter 3 (EAAT3),” Neurochem. Int., 98, 4–18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. S. Nagao, S. Kwak, and I. Kanazawa, “EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum,” Neuroscience, 78, No. 4, 929–933 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. K. Tanaka, K. Watase, T. Manabe, et al., “Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1,” Science, 276, No. 5319, 1699–1702 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. K. Kim, S. G. Lee, T. P. Kegelman, et al., “Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics,” J. Cell. Physiol., 226, No. 10, 2484–2493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P. Mookherjee, P. S. Green, G. Watson, et al., “GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model,” J. Alzheimers Dis., 26, No. 3, 447–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Holmseth, Y. Dehnes, Y. H. Huang, et al., “The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS,” J. Neurosci., 32, No. 17, 6000–6013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. D. Rothstein, M. Dykes-Hoberg, C. A. Pardo, et al., “Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate,” Neuron, 16, No. 3, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. R. Sullivan, T. Rauen, F. Fischer, et al., “Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: Implications for CNS glutamate homeostasis,” Glia, 45, No. 2, 155–169 (2004).

    Article  PubMed  Google Scholar 

  42. N. Utsunomiya-Tate, H. Endou, and Y. Kanai, “Tissue specific variants of glutamate transporter GLT-1,” FEBS Lett., 416, No. 3, 312–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. A. Vallejo-Illarramendi, M. Domercq, and C. Matute, “A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake,” J. Neurochem., 95, No. 2, 341–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. X. P. Jin, J. B. Peng, F. Huang, et al., “A mRNA molecule encoding truncated excitatory amino acid carrier 1 (EAAC1) protein (EAAC2) is transcribed from an independent promoter but not an alternative splicing event,” Cell Res., 12, No. 3–4, 257–262 (2002).

    Article  PubMed  Google Scholar 

  45. J. C. Jen, J. Wan, T. P. Palos, et al., “Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures,” Neurology, 65, No. 4, 529–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. S. Poletti, M. Riberto, B. Vai, et al., “A glutamate transporter EAAT1 gene variant influences amygdala functional connectivity in bipolar disorder,” J. Mol. Neurosci., 65, No. 4, 536–545 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. N. Reyes, C. Ginter, and O. Boudker, “Transport mechanism of a bacterial homologue of glutamate transporters,” Nature, 462, No. 7275, 880–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Kanai and M. A. Hediger, “The glutamate and neutral amino acid transporter family: Physiological and pharmacological implications,” Eur. J. Pharmacol., 479, No. 1–3, 237–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. N. Zerangue and M. P. Kavanaugh, “Flux coupling in a neuronal glutamate transporter,” Nature, 383, No. 6601, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. C. Grewer and T. Rauen, “Electrogenic glutamate transporters in the CNS: Molecular mechanism, presteady-state kinetics, and their impact on synaptic signaling,” J. Membr. Biol., 203, No. 1, 1–20 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Jabaudon, M. Scanziani, B. H. Gahwiler, and U. Gerber, “Acute decrease in net glutamate uptake during energy deprivation,” Proc. Natl. Acad. Sci. USA, 97, No. 10, 5610–5615 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. B. Billups and D. Attwell, “Modulation of non-vesicular glutamate release by pH,” Nature, 379, No. 6561, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. S. Tessler, N. C. Danbolt, R. L. Faull, et al., “Expression of the glutamate transporters in human temporal lobe epilepsy,” Neuroscience, 88, No. 4, 1083–1091 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. T. Eid, M. J. Thomas, D. D. Spencer, et al., “Loss of glutamine synthetase in the human epileptogenic hippocampus: Possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy,” Lancet, 363, No. 9402, 28–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. L. P. Bjornsen, T. Eid, S. Holmseth, et al., “Changes in glial glutamate transporters in human epileptogenic hippocampus: Inadequate explanation for high extracellular glutamate during seizures,” Neurobiol. Dis., 25, No. 2, 319–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. G. W. Mathern, D. Mendoza, A. Lozada, et al., “Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy,” Neurology, 52, No. 3, 453–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. E. A. Proper, G. Hoogland, S. M. Kappen, et al., “Distribution of glutamate transporters in the hippocampus of patients with pharma co-resistant temporal lobe epilepsy,” Brain, 125, No. 1, 32–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. G. Hoogland, R. J. van Oort, E. A. Proper, et al., “Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients,” Epil. Res., 59, No. 2–3, 75–82 (2004).

    Article  CAS  Google Scholar 

  59. D. S. Vasilev, N. L. Tumanova, K. K. Kim, et al., “Transient morphological alterations in the hippocampus after pentylenetetrazole-induced seizures in rats,” Neurochem. Res., 93, No. 3, 454–465 (2018).

    Google Scholar 

  60. A. V. Zaitsev, K. K. Kim, D. S. Vasilev, et al., “N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons,” J. Neurosci. Res., 93, No. 3, 454–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. G. Curia, D. Longo, G. Biagini, et al., “The pilocarpine model of temporal lobe epilepsy,” J. Neurosci. Meth., 172, No. 2, 143–157 (2008).

    Article  CAS  Google Scholar 

  62. S. V. Kalemenev, O. E. Zubareva, E. V. Frolova, et al., “Impairment of exploratory behavior and spatial memory in adolescent rats in lithium-pilocarpine model of temporal lobe epilepsy,” Dokl. Biol. Sci., 463, 175–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. D. C. Wolf, L. S. Bueno-Junior, C. Lopes-Aguiar, et al., “The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions,” Neuroscience, 312, 86–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. E. M. Suleymanova, M. V. Gulyaev, and K. R. Abbasova, “Structural alterations in the rat brain and behavioral impairment after status epilepticus: An MRI study,” Neuroscience, 315, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. M. W. Lopes, S. C. Lopes, D. B. Santos, et al., “Time course evaluation of behavioral impairments in the pilocarpine model of epilepsy,” Epil. Behav., 55, 92–100 (2016).

    Article  Google Scholar 

  66. J. Detour, H. Schroeder, D. Desor, and A. Nehlig, “A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats,” Epilepsia, 46, No. 4, 499–508 (2005).

    Article  PubMed  Google Scholar 

  67. S. Chen, X. Zeng, W. Zong, et al., “Aucubin alleviates seizures activity in Li-pilocarpine-induced epileptic mice: involvement of inhibition of neuroinflammation and regulation of neurotransmission,” Neurochem. Res., 44, No. 2, 472–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. O. Zubareva, A. Kovalenko, V. Karyakin, et al., “Changes in the expression of genes of the glutamate transporter and subunits of the NMDA and AMPA receptors in the rat amygdala in the lithium-pilocarpine model of epilepsy,” Neurochem. J., 12, No. 3, 222–227 (2018).

    Article  CAS  Google Scholar 

  69. O. E. Zubareva, A. A. Kovalenko, S. V. Kalemenev, et al., “Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats,” Neurosci. Lett., 686, 94–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. M. W. Lopes, F. M. Soares, N. de Mello, et al., “Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy,” Exp. Brain Res., 226, No. 2, 153–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. M. Sarfi , M. Elahdadi Salmani, I. Goudarzi, et al., “Evaluating the role of astrocytes on beta-estradiol effect on seizures of Pilocarpine epileptic model,” Eur. J. Pharmacol., 797, 32–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. P. B. Crino, H. Jin, M. D. Shumate, et al., “Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy,” Epilepsia, 43, No. 3, 211–218 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M. Sakurai, H. Kurokawa, A. Shimada, et al., “Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat,” Neuropathology, 35, No. 1, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. J. A. Hubbard, J. I. Szu, J. M. Yonan, and D. K. Binder, “Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy,” Exp. Neurol., 283, Pt. A, 85–96 (2016).

  75. M. Nonaka, E. Kohmura, T. Yamashita, et al., “Increased transcription of glutamate-aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure,” Brain Res. Mol. Brain Res., 55, No. 1, 54– 60 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. D. K. Takahashi, J. R. Vargas, and K. S. Wilcox, “Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus,” Neurobiol. Dis., 40, No. 3, 573–585 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. C. Samuelsson, E. Kumlien, R. Flink, et al., “Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy,” Neurosci. Lett., 289, No. 3, 185–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Y. Ueda, T. Doi, J. Tokumaru, et al., “Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid,” J. Neurochem., 76, No. 3, 892–900 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Y. H. Yu, W. Xie, and Y. Y. Zhao, “[Effects of heterotherapy for homopathy on the metabolism path of glutamate in the pentylenetetrazol-kindled seizure rats’ hippocampus],” Zhongguo Zhong Xi Yi Jie He Za Zhi, 33, No. 1, 95–99 (2013).

    PubMed  Google Scholar 

  80. E. M. Ingram, J. W. Wiseman, S. Tessler, and P. C. Emson, “Reduction of glial glutamate transporters in the parietal cortex and hippocampus of the EL mouse,” J. Neurochem., 79, No. 3, 564–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. W. E. Ghijsen, A. I. da Silva Aresta Belo, M. Zuiderwijk, and F. H. Lopez da Silva, “Compensatory change in EAAC1 glutamate transporter in rat hippocampus CA1 region during kindling epileptogenesis,” Neurosci. Lett., 276, No. 3, 157–610 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Z. N. Zhuravleva, G. I. Zhuravlev, and E. I. Samokhina, “Changes in the interaction between astrocyte processes and synaptic terminals during generation of epileptiform activity,” Ros. Fiziol. Zh., 105, No. 6, 707–715 (2019).

    Article  Google Scholar 

  83. A. Plata, A. Lebedeva, P. Denisov, et al., “Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca(2+) Activity and Impaired Synaptic Plasticity in the Rat Hippocampus,” Front. Mol. Neurosci., 11, 215 (2018).

  84. C. Murphy-Royal, J. P. Dupuis, J. A. Varela, et al., “Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission,” Nat. Neurosci., 18, No. 2, 219–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. K. Watase, K. Hashimoto, M. Kano, et al., “Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice,” Eur. J. Neurosci., 10, No. 3, 976–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. T. Watanabe, K. Morimoto, T. Hirao, et al., “Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice,” Brain Res., 845, No. 1, 92–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. K. Nagatomo, Y. Ueda, T. Doi, et al., “Functional role of GABA transporters for kindling development in GLAST KO mice,” Neurosci. Res., 57, No. 2, 319–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. N. Tsuru, Y. Ueda, and T. Doi, “Amygdaloid kindling in glutamate transporter (GLAST) knockout mice,” Epilepsia, 43, No. 8, 805–811 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. K. Tanaka, K. Watase, T. Manabe, et al., “Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1,” Science, 276, No. 5319, 1699–1702 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. G. T. Petr, Y. Sun, N. M. Frederick, et al., “Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes,” J. Neurosci., 35, No. 13, 5187–5201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Q. Kong, K. Takahashi, D. Schulte, et al., “Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus,” Neurobiol. Dis., 47, No. 2, 145–154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. P. Peghini, J. Janzen, and W. Stoffel, “Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration,” EMBO J., 16, No. 13, 3822–3832 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. J. P. Sepkuty, A. S. Cohen, C. Eccles, et al., “A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy,” J. Neurosci., 22, No. 15, 6372–6379 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. R. J. Vandenberg and R. M. Ryan, “Mechanisms of glutamate transport,” Physiol. Rev., 93, No. 4, 1621–1657 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. A. C. Fontana, “Current approaches to enhance glutamate transporter function and expression,” J. Neurochem., 134, No. 6, 982–1007 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. J. D. Rothstein, S. Patel, M. R. Regan, et al., “Betalactam antibiotics offer neuroprotection by increasing glutamate transporter expression,” Nature, 433, No. 7021, 73–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. E. Lee, M. Sidoryk-Wegrzynowicz, Z. Yin, et al., “Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes,” Glia, 60, No. 7, 1024–1036 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. S. G. Lee, Z. Z. Su, L. Emdad, et al., “Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes,” J. Biol. Chem., 283, No. 19, 13,116–13,123 (2008).

    Google Scholar 

  99. Y. Uyanikgil, K. Ozkeskek, T. Cavusoglu, et al., “Positive effects of ceftriaxone on pentylenetetrazol-induced convulsion model in rats,” Int. J. Neurosci., 126, No. 1, 70–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. A. M. Hussein, M. Ghalwash, K. Magdy, and O. A. Abulseoud, “Beta lactams antibiotic ceftriaxone modulates seizures, oxidative stress and connexin 43 expression in hippocampus of pentylenetetrazole kindled rats,” J. Epil. Res., 6, No. 1, 8–15 (2016).

    Article  Google Scholar 

  101. A. V. Jelenkovic, M. D. Jovanovic, D. D. Stanimirovic, et al., “Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions,” Exp. Biol. Med. (Maywood), 233, No. 11, 1389–1394 (2008).

    Article  CAS  Google Scholar 

  102. N. Soni, P. Koushal, B. V. Reddy, et al., “Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats,” Epil. Behav., 48, 4–14 (2015).

  103. G. S. Goodrich, A. Y. Kabakov, M. Q. Hameed, et al., “Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat,” J. Neurotrauma, 30, No. 16, 1434–1441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. M. Q. Hameed, T. H. Hsieh, L. Morales-Quezada, et al., “Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model,” Cereb. Cortex, 29, No. 11, 4506–4518 (2019).

    Article  PubMed  Google Scholar 

  105. P. C. Lai, Y. T. Huang, C. C. Wu, et al., “Ceftriaxone attenuates hypoxicischemic brain injury in neonatal rats,” J. Biomed. Sci., 18, 69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. C. Thone-Reineke, C. Neumann, P. Namsolleck, et al., “The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke,” J. Hypertens., 26, No. 12, 2426–2435 (2008).

    Article  PubMed  CAS  Google Scholar 

  107. Y. Y. Hu, J. Xu, M. Zhang, et al., “Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats,” J. Neurochem., 132, No. 2, 194–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. W. Krzyzanowska, B. Pomierny, B. Budziszewska, et al., N-Acetylcysteine and ceftriaxone as preconditioning strategies in focal brain ischemia: infl uence on glutamate transporters expression,” Neurotox. Res., 29, No. 4, 539–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. J. L. Loewen, G. Albertini, E. J. Dahle, et al., “Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity,” Exp. Neurol., 318, 50–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. P. S. Rao, S. Goodwani, R. L. Bell, et al., “Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats,” Neuroscience, 295, 164–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. H. Nie, H. Zhang, and H. R. Weng, “Minocycline prevents impaired glial glutamate uptake in the spinal sensory synapses of neuropathic rats,” Neuroscience, 170, No. 3, 901–912 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. B. Hassel, E. G. Iversen, L. Gjerstad, and E. Tauboll, “Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate,” J. Neurochem., 77, No. 5, 1285–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Q. X. Mao and T. D. Yang, “Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats,” Brain Res. Bull., 81, No. 4–5, 424–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. O. Zelenaia, B. D. Schlag, G. E. Gochenauer, et al., “Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB,” Mol. Pharmacol., 57, No. 4, 667–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. G. Tian, L. Lai, H. Guo, et al., “Translational control of glial glutamate transporter EAAT2 expression,” J. Biol. Chem., 282, No. 3, 1727–1737 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Z. H. Wen, G. J. Wu, Y. C. Chang, et al., “Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats,” Neuroscience, 133, No. 3, 807–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. P. Karki, K. Smith, J. Johnson, Jr., and E. Lee, “Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-alpha in estrogen-induced upregulation of glutamate transporters in astrocytes,” Mol. Cell. Endocrinol., 389, No. 1–2, 58–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Q. Fang, W. W. Hu, X. F. Wang, et al., “Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury,” Neuropharmacology, 77, 156–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. R. Ganel, T. Ho, N. J. Maragakis, et al., “Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection,” Neurobiol. Dis., 21, No. 3, 556–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. O. V. Mortensen, J. L. Liberato, J. Coutinho-Netto, et al., “Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains,” J. Neurochem., 133, No. 2, 199–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. A. C. Fontana, R. de Oliveira Beleboni, M. W. Wojewodzic, et al., “Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom,” Mol. Pharmacol., 72, No. 5, 1228–1237 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. E. Fumagalli, M. Funicello, T. Rauen, et al., “Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1,” Eur. J. Pharmacol., 578, No. 2–3, 171–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Q. Kong, L. C. Chang, K. Takahashi, et al., “Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection,” J. Clin. Invest., 124, No. 3, 1255–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 9, pp. 1096–1112, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolensky, I.V., Ovsepian, S.V. & Zaitsev, A.V. Glutamate Transporters (EAAT-1–3) as a Factor in the Pathogenesis and a Potential Therapeutic Target in Epilepsy. Neurosci Behav Physi 50, 777–786 (2020). https://doi.org/10.1007/s11055-020-00965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00965-4

Keywords

Navigation