Skip to main content
Log in

A Method for Assessing the Conributions of Different Types of Ionotropic Receptors to Postsynaptic Responses during Epileptiform Discharges In Vitro

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Epileptiform activity in living brain slices is the result of the complex integration of excitatory and inhibitory synaptic signals. The time pattern of activation of different synaptic conductances during interictal discharges provides a description of the patterns of operation of neural networks in epileptiform states and a route to analysis of the effects of different pharmacological agents on it. Existing methods of assessing synaptic conductances generally make the assumption that the voltage-current relationships (VCR) of neuron responses are linear and provide for assessment of the contributions of two types of conductance to the postsynaptic response, i.e., excitatory and inhibitory, without discriminating the contributions of specific types of synaptic receptors. We describe here the theoretical basis of a method for simultaneous assessment of the postsynaptic conductances of three types of ionotropic receptors (AMPA NMDA, and GABAA), which undergo activation during interictal discharges in the entorhinal cortex. The proposed algorithm utilizes the different types of VCR of these receptors to assess their contributions to the postsynaptic responses of a neuron and proposes use of the patch clamp method in the whole cell configuration in voltage clamping mode. Use of this method was demonstrated using various models of epileptiform activity as examples. The time courses of synaptic conductances during interictal discharges generated with full preservation of GABAA receptor-mediated conductance were compared using the antibiotic cefepime or bicuculline. Despite the fact that cefepime is a GABAA receptor antagonist, total conductance at the late stages of the interictal discharge was significantly greater as compared with a model in which this type of receptor was not blocked or on use of another competitive antagonist, bicuculline. Thus, the method proposed here identifies fine differences in the time courses of three types of synaptic conductance and allows differences in the proepileptic effects of GABAA receptor blockers to be demonstrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Amakhin, J. L. Ergina, A. V. Chizhov, and A. V. Zaitsev, “Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex,” Front. Cell. Neurosci., 10, 233 (2016), https://doi.org/10.3389/fncel.2016.00233.

  2. M. Avoli, M. D’Antuono, J. Louvel, et al., “Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro,” Prog. Neurobiol., 68, 167–201 (2002).

    Article  CAS  Google Scholar 

  3. A. Gonzalez-Sulser, J. Wang, B. N. Queenan, et al., “Hippocampal neuron firing and local field potentials in the in vitro 4-aminopyridine epilepsy model,” J. Neurophysiol., 108, 2568–2580 (2012).

    Article  CAS  Google Scholar 

  4. Z. Shiri, M. Levesque, G. Etter, et al., “Optogenetic low-frequency stimulation of specific neuronal populations abates ictogenesis,” J. Neurosci., 37, 2999–3008 (2017).

    Article  CAS  Google Scholar 

  5. V. Lopantsev and M. Avoli, “Participation of GABAA-mediated inhibition in ictal-like discharges in the rat entorhinal cortex,” J. Neurophysiol., 79, 352–360 (1998).

    Article  CAS  Google Scholar 

  6. Z. Shiri, F. Manseau, M. Levesque, et al., “Activation of specific neuronal networks leads to different seizure onset types,” Ann. Neurol., 79, 354–365 (2016).

    Article  Google Scholar 

  7. A. J. Trevelyan and C. A. Schevon, “How inhibition influences seizure propagation,” Neuropharmacology, 69, 45–54 (2013).

    Article  CAS  Google Scholar 

  8. D. V. Amakhin, E. B. Soboleva, J. L. Ergina, et al., “Seizure-induced potentiation of AMPA receptor-mediated synaptic transmission in the entorhinal cortex,” Front. Cell. Neurosci., 12, 486 (2018), https://doi.org/10.3389/fncel.2017.00264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. J. Trevelyan, D. Sussillo, and R. Yuste, “Feedforward inhibition contributes to the control of epileptiform propagation speed,” J. Neurosci., 27, 3383–3387 (2007).

    Article  CAS  Google Scholar 

  10. J. Ziburkus, J. R. Cressman, and S. J. Schiff, “Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events,” J. Neurophysiol., 109, 1296–1306 (2013).

    Article  Google Scholar 

  11. J. Ziburkus, J. R. Cressman, E. Barreto, and S. J. Schiff, “Interneuron and pyramidal cell interplay during in vitro seizure-like events,” J. Neurophysiol., 95, 3948–3954 (2006).

    Article  Google Scholar 

  12. L. Borg-Graham, C. Monier, and Y. Frégnac, “Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex,” J. Physiol., 90, 185–188 (1996).

    CAS  Google Scholar 

  13. C. Monier, J. Fournier, and Y. Frégnac, “In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices,” J. Neurosci. Meth., 169, 323–365 (2008).

    Article  CAS  Google Scholar 

  14. M. Lankarany, J. E. Heiss, I. Lampl, and T. Toyoizumi, “Simultaneous Bayesian estimation of excitatory and inhibitory synaptic conductances by exploiting multiple recorded trials,” Front. Comput. Neurosci., 10, 110 (2016), https://doi.org/10.3389/fncom.2016.00110.

  15. A. V. Chizhov and D. V. Amakhin, “Method of experimental synaptic conductance estimation: Limitations of the basic approach and extension to voltage-dependent conductances,” Neurocomputing, 275, 2414–2425 (2018).

    Article  Google Scholar 

  16. S. Li, N. Liu, L. Yao, et al., “Determination of effective synaptic conductances using somatic voltage clamp,” PLoS Comput. Biol., 15, No. 3, e1006871 (2019), https://doi.org/10.1371/journal.pcbi.1006871.

  17. E. Neher, “Correction for liquid junction potentials in patch clamp experiments,” Methods Enzymol., 207, 123–131 (1992).

    Article  CAS  Google Scholar 

  18. A. V. Chizhov, D. V. Amakhin, and A. V. Zaitsev, “Computational model of interictal discharges triggered by interneurons,” PLoS One, 12, No. 10, e0185752 (2017), https://doi.org/10.1371/journal.pone.0185752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. V. Chizhov, D. V. Amakhin, and A. V. Zaitsev, “Mathematical model of Na-K-Cl homeostasis in ictal and interictal discharges,” PLoS One, 14, No. 3, e0213904 (2019), https://doi.org/10.1371/journal.pone.0213904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. V. Chizhov, D. V. Amakhin, and A. V. Zaitsev, “Spatial propagation of interictal discharges along the cortex,” Biochem. Biophys. Res. Commun, 508, 1245–1251 (2019).

    Article  CAS  Google Scholar 

  21. M. Sugimoto, I. Uchida, T. Mashimo, et al., “Evidence for the involvement of GABA(A) receptor blockade in convulsions induced by cephalosporins,” Neuropharmacology, 45, 304–314 (2003).

    Article  CAS  Google Scholar 

  22. M. Fujimoto, M. Munakata, and N. Akaike, “Dual mechanisms of GABAA response inhibition by beta-lactam antibiotics in the pyramidal neurones of the rat cerebral cortex,” Br. J. Pharmacol., 116, 3014–3020 (1995).

    Article  CAS  Google Scholar 

  23. M. Sugimoto, S. Fukami, H. Kayakiri, et al., “The beta-lactam antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABA(A) receptors,” Br. J. Pharmacol., 135, 427–432 (2002).

    Article  CAS  Google Scholar 

  24. D. V. Amakhin, E. B. Soboleva, and A. V. Zaitsev, “Cephalosporin antibiotics are weak blockers of GABAa receptor-mediated synaptic transmission in rat brain slices,” Biochem. Biophys. Res. Commun., 499, 868–874 (2018).

    Article  CAS  Google Scholar 

  25. A. V. Chizhov, D. V. Amakhin, A. V. Zaitsev, and L. G. Magazanik, “AMPAR-mediated interictal discharges in neurons of entorhinal cortex: experiment and model,” Dokl. Biol. Sci., 479, 1–4 (2018).

    Article  Google Scholar 

  26. L. E. Payne, D. J. Gagnon, R. R. Riker, et al., “Cefepime-induced neurotoxicity: a systematic review,” Crit. Care BioMed Central, 21, 276 (2017).

    Article  Google Scholar 

  27. A. A. Appa, R. Jain, R. M. Rakita, et al., “Characterizing cefepime neurotoxicity: A systematic review,” Open Forum Infect. Dis., 4, No. 4 (2017).

    Article  Google Scholar 

  28. G. I. Atabekov, S. D. Kupalyan, A. B. Timofeev, and S. S. Khukhrikov, Theoretical Foundations of Electrical Engineering. Nonlinear Electrical Circuits. The Electromagnetic Field, Lan’, St. Petersburg (2010).

  29. C. E. Jahr and C. F. Stevens, “Voltage dependence of NMDAactivated macroscopic conductances predicted by single-channel kinetics,” J. Neurosci., 10, 3178–3182 (1990).

    Article  CAS  Google Scholar 

  30. D. E. Goldman, “Potential, impedance, and rectification in membranes,” J. Gen. Physiol., 27, 37–60 (1943).

    Article  CAS  Google Scholar 

  31. A. L. Hodgkin and B. Katz, “The effect of sodium ions on the electrical activity of giant axon of the squid,” J. Physiol., 108, 37–77 (1949).

    Article  CAS  Google Scholar 

  32. J. L. Barker and N. L. Harrison, “Outward rectification of inhibitory postsynaptic currents in cultured rat hippocampal neurones,” J. Physiol., 403, 41–55 (1988).

    Article  CAS  Google Scholar 

  33. P. Jedlicka, T. Deller, B. S. Gutkin, and K. H. Backus, “Activitydependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission,” Hippocampus, 21, 885–898 (2011).

    CAS  PubMed  Google Scholar 

  34. K. J. Staley and W. R. Proctor, “Modulation of mammalian dendritic GABAa receptor function by the kinetics of Cl- and HCO3-transport,” J. Physiol., 519, 693–712 (1999).

    Article  CAS  Google Scholar 

  35. B. Sakmann and E. Neher, Single-Channel Recording, Springer, Boston, MA (1995).

    Book  Google Scholar 

  36. M. de Curtis, L. Librizzi, L. Uva, and V. Gnatkovsky, “GABAa receptor-mediated networks during focal seizure onset and progression in vitro,” Neurobiol. Dis., 125, 190–197 (2019).

    Article  Google Scholar 

  37. L. Librizzi, G. Losi, I. Marcon, et al., “Interneuronal network activity at the onset of seizure-like events in entorhinal cortex slices,” J. Neurosci., 37, 10,398–10,407 (2017).

    Google Scholar 

  38. Z. Shiri, F. Manseau, M. Levesque, et al., “Interneuron activity leads to initiation of low-voltage fast-onset seizures,” Ann. Neurol., 77, 541–546 (2015).

    Article  Google Scholar 

  39. A. V. Chizhov, E. Malinina, M. Druzin, et al., “Firing clamp: a novel method for single-trial estimation of excitatory and inhibitory synaptic neuronal conductances,” Front. Cell. Neurosci., 8, 86 (2014), https://doi.org/10.3389/fncel.2014.00086.

    Article  PubMed  PubMed Central  Google Scholar 

  40. D. Bai, R. U. Muller, and J. C. Roder, “Non-ionotropic cross-talk between AMPA and NMDA receptors in rodent hippocampal neurones,” J. Physiol., 543, 23–33 (2002).

    Article  CAS  Google Scholar 

  41. R. T. Mathias, I. S. Cohen, and C. Oliva, “Limitations of the whole cell patch clamp technique in the control of intracellular concentrations,” Biophys. J., 58, 759–770 (1990).

    Article  CAS  Google Scholar 

  42. C. Oliva, I. S. Cohen, and R. T. Mathias, “Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration,” Biophys. J., 54, 791–799 (1988).

    Article  CAS  Google Scholar 

  43. M. Push and E. Neher, “Rates of diffusional exchange between small cells and a measuring patch pipette,” Pfl ügers Arch., 411, 204–211 (1988).

    Article  Google Scholar 

  44. U. Karlsson, M. Druzin, and S. Johansson, “Cl(–) concentration changes and desensitization of GABA(A) and glycine receptors,” J. Gen. Physiol., 138, 609–626 (2011).

    Article  CAS  Google Scholar 

  45. T. D. Yelhekar, M. Druzin, U. Karlsson, et al., “How to properly measure a current-voltage relation? – interpolation vs. ramp methods applied to studies of GABAA receptors,” Front. Cell. Neurosci., 10, 10 (2016), https://doi.org/10.3389/fncel.2016.00010.

  46. V. A. Semenov, D. V. Amakhin, and N. P. Veselkin, “Contribution of nonstationarity of intracellular potassium ion concentrations to the kinetics of voltage-gated potassium currents,” Biol. Membrany, 36, No. 3, 207–217 (2019).

    CAS  Google Scholar 

  47. J. R. Clay, “Comparison of the effects of internal TEA+ and Cs+ on potassium current in squid giant axons,” Biophys. J., 48, 885–892 (1985).

    Article  CAS  Google Scholar 

  48. M. Avoli, M. Barbarosie, A. Lucke, et al., “Synchronous GABAmediated potentials and epileptiform discharges in the rat limbic system in vitro,” J. Neurosci., 16, 3912–3924 (1996).

    Article  CAS  Google Scholar 

  49. M. Avoli, J. Louvel, I. Kurcewicz, et al., “Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus,” J. Physiol., 493, 707–717 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 7, pp. 812–831, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amakhin, D.V., Soboleva, E.B. & Zaitsev, A.V. A Method for Assessing the Conributions of Different Types of Ionotropic Receptors to Postsynaptic Responses during Epileptiform Discharges In Vitro. Neurosci Behav Physi 50, 750–761 (2020). https://doi.org/10.1007/s11055-020-00962-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00962-7

Keywords

Navigation