Skip to main content
Log in

Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to study the effects of stress induced by surgical interventions in early pregnancy on neuron density in the prefrontal cortex and hippocampal fields CA1 and CA3 and on neurogenesis in the dentate fascia of the hippocampus in the adult offspring of OXYS rats. Female OXTS rats were paired with fertile males of the same strain and, 96 h after detection of spermatozoids in vaginal smears, underwent a surgical procedure imitating embryo transplantation. The offspring of these females (OXYS-PS) were studied in comparison with intact OXYS and WAG rats aged five months. The density of pyramidal neurons in the prefrontal cortex of intact OXYS rats was significantly greater than that in rats of the WAG control strain. Neuron density in hippocampal field CA1 in intact OXYS rats was smaller, while that in field CA3 was greater, than that in WAG rats. No significant differences in the intensity of neurogenesis were seen between intact WAG and OXYS rats. In rats of the experimental group, OXYS-PS, the density of pyramidal neurons was lower in the prefrontal cortex and hippocampal field CA1 than in both control strains, while in field CA3 it was lower only in comparison with intact OXYS rats. In addition, rats of the OXYS-PS group showed a higher level of neurogenesis in the dentate gyrus of the hippocampus than both control strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrova, M. A. and Marei, M. V., “Stem cells in the brains of mammals and humans: basic and applied aspects,” Zh. Vyssh. Nerv. Deyat., 65, No. 3, 271–305 (2015).

    CAS  Google Scholar 

  • Maksimova, K. Yu., Stefanova, N. A., and Logvinov, S. V., “Morphological changes in neurons in the rat hippocampus in premature aging,” Byull. Sib. Med., 13, No. 1, 56–61 (2014).

    Google Scholar 

  • Rozhkova, I. N., Igonina, T. N., Ragaeva, D. S., et al., “Delayed effects of surgery on mothers in early pregnancy on arterial pressure and behavior in OXYS rats,” Vavilov Zh. Genet. Selekts., 21, No. 8, 937–942 (2017).

    Google Scholar 

  • Badache, S., Bouslama, S., Brahmia, O., et al., “Prenatal noise and restraint stress interact to alter exploratory behavior and balance in juvenile rats, and mixed stress reverses these effects,” Stress, 20, 320–328 (2017).

    PubMed  Google Scholar 

  • Bandeira, F., Lent, R., and Herculano-Houzel S., “Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat,” Proc. Natl. Acad. Sci. USA, 106, No. 33, 14108–14113 (2009).

    CAS  PubMed  Google Scholar 

  • Barker, D. J., “Fetal undernutrition and adult hypertension,” Hand. Hypertens., 19, 587–599 (1999).

    Google Scholar 

  • Barker, D. J., “In utero programming of cardiovascular disease,” Theriogenology, 53, 555–574 (2000).

    CAS  PubMed  Google Scholar 

  • Barker, D. J. and Thornburg, K. L., “The obstetric origins of health for a lifetime,” Clin. Obstet. Gynecol., 56, 511–519 (2013).

    PubMed  Google Scholar 

  • Barlow, S. M., Morrison, P. J., and Sullivan, F. M., “Effects of acute and chronic stress on plasma corticosterone levels in the pregnant and non-pregnant mouse,” J. Endocrinol., 66, No. 1, 90–99 (1975).

    Google Scholar 

  • Burkus, J., Kacmarova, M., Kubandova, J., et al., “Stress exposure during the preimplantation period affects blastocyst lineages and offspring development,” J. Reprod. Dev, 61, No. 4, 325–331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalley, J. W., Cardinal, R. N., and Robbins, T. W., “Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates,” Neurosci. Biobehav. Rev., 28, No. 7, 771–784 (2004).

    CAS  PubMed  Google Scholar 

  • Feliciano, D. M. and Bordey A., “Newborn cortical neurons: only for neonates?” Trends Neurosci., 36, No. 1, 51–61 (2013).

    CAS  PubMed  Google Scholar 

  • Festing, M. F., Baumans, V., Combes, R. D., et al., “Reducing the use of laboratory animals in biomedical research: problems and possible solutions,” Altern. Lab. Anim., 26, No. 3, 283–301 (1998).

    CAS  PubMed  Google Scholar 

  • Festing, M. F., “Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical research,” ILAR J., 55, No. 3, 399–404 (2014).

    CAS  PubMed  Google Scholar 

  • Franz, S. I., “On the functions of the cerebrum. I. The frontal lobes in relation to the production and retention of simple sensory-motor habits,” Am. J. Physiol., 8, 1–22 (1902).

    Google Scholar 

  • Ho, S. C., Hsu, C. C., Pawlak, C. R., et al., “Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson’s disease rat model,” Behav. Brain Res., 268, 177–184 (2014).

    CAS  PubMed  Google Scholar 

  • Goldstein, J. A., Norris, S. A., and Aronoff, D. M., “DOHaD at the intersection of maternal immune activation and maternal metabolic stress: a scoping review,” J. Dev. Orig. Health Dis., 1–11 (2017).

  • Groenewegen, H. J., Wright, C. I., and Uylings, H. B. M., “The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia,” J. Psychopharmacol., 11, No. 2, 99–106 (1997).

    CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez, M. E., Serrano-Garcia, C., Antonio Vazquez-Roque, R., et al., “Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats,” Synapse, 70, No. 5, 206–217 (2016).

    Google Scholar 

  • Igonina, T. N., Ragaeva, D. S., Tikhonova, M. A., et al., “Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence,” Brain Res., 1681, 75–84 (2018).

    CAS  PubMed  Google Scholar 

  • Kolb B., “Prefrontal cortex,” in: The Cerebral Cortex of the Rat, B. Kolb and R. C. Tees (eds.), MIT Press, Cambridge (1990).

    Google Scholar 

  • Korbolina, E. E., Kozhevnikova, O. S., Stefanova, N. A., and Kolosova, N. G., “Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats,” Aging (Albany NY), 4, No. 1, 49–59 (2012).

    CAS  Google Scholar 

  • Korbolina, E. E., Ershov, N. I., Bryzgalov, L. O., and Kolosova, N. G., “Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats,” BMC Genomics, 15, S3 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Korbolina, E. E., Zhdankina, A. A., Fursova, A. Z., et al., “Genes of susceptibility to early neurodegenerative changes in the rat retina and brain: analysis by means of congenic strains,” BMC Genet., 17, 153 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., et al., “Senescenceaccelerated OXYS rats: A genetic model of premature aging and age-related diseases,” Adv. Gerontol., 4, 294–298 (2014).

    Google Scholar 

  • Kesner, R. P. and Churchwell, J. C., “An analysis of rat prefrontal cortex in mediating executive function,” Neurobiol. Learn. Mem., 96, No. 3, 417–431 (2011).

    PubMed  Google Scholar 

  • Kwong, W. Y., Wild, A. E., Roberts, P., et al., “Maternal undernutrition during the preimplantation period of rat Development causes blastocyst abnormalities and programming of postnatal hypertension,” Development, 127, 4195–4202 (2000).

    CAS  PubMed  Google Scholar 

  • Lerch, S., Tolksdorf, G., Schutz, P., et al., “Effects of embryo transfer on emotional behaviors in C57BL/6 mice,” J. Am. Assoc. Lab. Anim. Sci., 55, No. 5, 510–519 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Paxinos, G. and Watson C., The Rat Brain in Stereotaxic Coordinates, Academic Press (2013), 7th ed.

  • Peinado, M. A., “Histology and histochemistry of the aging cerebral cortex: an overview,” Microsc. Res. Tech., 43, No. 1, 1–7 (1998).

    CAS  PubMed  Google Scholar 

  • Roseboom, T. J., Painter, R. C., van Abeelen, A. F., et al., “Hungry in the womb: what are the consequences? Lessons from the Dutch famine,” Maturitas, 70, No. 2, 141–145 (2011).

    PubMed  Google Scholar 

  • Rudnitskaya, E. A., Maksimova, K. Y., Muraleva, N. A., et al., “Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease,” Biogerontology, 16, 303–316 (2015).

    CAS  PubMed  Google Scholar 

  • Rudnitskaya, E. A., Kolosova, N. G., and Stefanova, N. A., “Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats,” Biochemistry (Mosc.), 82, No. 3, 318–329 (2017).

    CAS  Google Scholar 

  • Said, N., Lakehayli, S., Battas, O., et al., “Effects of prenatal stress on anxiety-like behavior and nociceptive response in rats,” J. Integr. Neurosci., 14, 223–234 (2015).

    CAS  PubMed  Google Scholar 

  • Sposito, D. R. and Santos, A. R., “Histochemical study of early embryo implantation in rats,” Int. J. Morphol, 29, No. 1, 187–192 (2011).

    Google Scholar 

  • Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., et al., “Senescenceaccelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease,” Cell Cycle, 13, 898–909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., et al., “Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats,” Oncotarget, 6, No. 3, 1396–1413 (2015).

    PubMed  Google Scholar 

  • Suckow, M. A., Weisbroth, S. H., and Franklin, C. L., The Laboratory Rat, Academic Press (2005).

  • Thierry, A. M., Gioanni, Y., Degenetais, E., and Glowinski J., “Hippocampoprefrontal cortex pathway: Anatomical and electrophysiological characteristics,” Hippocampus, 10, 411–419 (2000).

    CAS  PubMed  Google Scholar 

  • Tikhonova, M. A., Ho, S. C., Akopyan, A. A., et al., “Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence,” Behav. Brain Res., 330, 8–16 (2017).

    CAS  PubMed  Google Scholar 

  • Wadhwa, P. D., Buss, C., Entringer, S., and Swanson, J. M., “Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms,” Semin. Reprod. Med., 27, No. 5, 358–368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weng, J. C., Tikhonova, M. A., Chen, J. H., et al., “Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson’s disease rat model: An immunohistochemical and MRI study,” Behav. Brain Res., 305, 126–139 (2016).

    CAS  PubMed  Google Scholar 

  • Wilson C. A., Vazdarjanova, A., and Terry, A. V., Jr., “Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction,” Behav. Brain Res., 238, 279–288 (2013).

    PubMed  Google Scholar 

  • Yamada, J. and Jinno S., “Aging of hippocampal neurogenesis and soy isoflavone,” Oncotarget, 7, 83835–83836 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Amstislavsky.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 69, No. 5, pp. 618–628, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkova, I.N., Brusentsev, E.Y., Igonina, T.N. et al. Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats. Neurosci Behav Physi 50, 723–729 (2020). https://doi.org/10.1007/s11055-020-00960-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00960-9

Keywords

Navigation