Skip to main content
Log in

Neuromorphological Aspects of the GABAergic Hypothesis of the Pathogenesis of Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The scientific literature contains several hypotheses for the pathogenesis of schizophrenia. The most widespread hypotheses for schizophrenia are the dopaminergic, serotoninergic, and glutamatergic hypotheses. There is also the suggestion that other neurochemical systems are involved in the pathogenesis of schizophrenia, particularly the GABAergic. This review considers published data on derangements of GABAergic interneurons in schizophrenia, taking account of data on post-mortem, neuroimaging, molecular-genetic, and electrophysiological research. A hypothesis for the pathogenesis of schizophrenia based on impairments to the myelination of GABAergic interneurons is proposed, these impairments leading to decreases in the numbers of intra- and interhemisphere coherent connections and the appearance of symptoms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Owen, A. Sawa, and P. B. Mortensen, “Schizophrenia,” Lancet, 388, No. 10039, 86–97 (2016), https://doi.org/10.1016/S0140-6736(15)01121-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. K. L. Davis, R. S. Kahn, G. Ko, and M. Davidson, “Dopamine in schizophrenia: a review and reconceptualization,” Am. J. Psychiatry, 148, No. 11, 1474–1486 (1991), https://doi.org/10.1176/ajp.148.11.1474.

    Article  CAS  PubMed  Google Scholar 

  3. O. D. Howes and S. Kapur, “The dopamine hypothesis of schizophrenia: version III – the final common pathway,” Schizophr. Bull., 35, No. 3, 549–562 (2009), https://doi.org/10.1093/schbul/sbp006.

    Article  PubMed  PubMed Central  Google Scholar 

  4. H. Y. Meltzer, Z. Li, Y. Kaneda, and J. Ichikawa, “Serotonin receptors: their key role in drugs to treat schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, No. 7, 1159–1172 (2003), https://doi.org/10.1016/j.pnpbp.2003.09.010.

    Article  CAS  PubMed  Google Scholar 

  5. K. Yamamoto and O. Hornykiewicz, “Proposal for a noradrenaline hypothesis of schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 28, No. 5, 913–922 (2004), https://doi.org/10.1016/j.pnpbp.2004.05.033.

    Article  CAS  PubMed  Google Scholar 

  6. K. Nakazawa, V. Zsiros, Z. Jiang, et al., “GABAergic interneuron origin of schizophrenia pathophysiology,” Neuropharmacology, 62, No. 3, 1574–1583 (2003), https://doi.org/10.1016/j.neuropharm.2011.01.022.

    Article  CAS  Google Scholar 

  7. M. J. Schmidt and K. Mirnics, “Neurodevelopment, GABA system dysfunction, and schizophrenia,” Neuropsychopharmacology, 40, No. 1, 190–206 (2015), https://doi.org/10.1038/npp.2014.95.

    Article  PubMed  Google Scholar 

  8. J. Stedehouder, J. J. Couey, D. Brizee, et al., “Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans,” Cereb. Cortex, 27, No. 10, 5001–5013 (2017), https://doi.org/10.1093/cercor/bhx203.

    Article  CAS  PubMed  Google Scholar 

  9. R. Tremblay, S. Lee, and B. Rudy, “GABAergic interneurons in the neocortex: from cellular properties to circuits,” Neuron, 91, No. 2, 260–292 (2016), https://doi.org/10.1016/j.neuron.2016.06.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Markram, M. Toledo-Rodriguez, Y. Wang, et al., “Interneurons of the neocortical inhibitory system,” Nat. Rev. Neurosci., 5, No. 10, 793–807 (2003), https://doi.org/10.1038/nrn1519.

    Article  CAS  Google Scholar 

  11. Z. F. Kisvárday, A. Gulyas, D. Beroukas, et al., “Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex,” Brain, 113, No. 3, 793–812 (1990).

    Article  Google Scholar 

  12. B. Rudy, G. Fishell, S. Lee, and J. Hjerling-Leffler, “Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons,” Dev. Neurobiol., 71, No. 1, 45–61 (2003), https://doi.org/10.1002/dneu.20853.

    Article  Google Scholar 

  13. J. DeFelipe, P. L. López-Cruz, R. Benavides-Piccione, et al., “New insights into the classifi cation and nomenclature of cortical GABAergic interneurons,” Nat. Rev. Neurosci., 14, No. 3, 202–216 (2013), https://doi.org/10.1038/nrn3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Hu, J. Gan, and P. Jonas, “Interneurons. Fast-spiking, parvalbumin GABAergic interneurons: from cellular design to microcircuit function,” Science, 345, No. 6196, 1255263 (2003), https://doi.org/10.1126/science.1255263.

    Article  CAS  Google Scholar 

  15. S. M. Williams, P. S. Goldman-Rakic, and C. Leranth, “The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex,” J. Comp. Neurol., 320, No. 3, 353–369 (1992), https://doi.org/10.1002/cne.903200307.

    Article  CAS  PubMed  Google Scholar 

  16. S. R. Cobb, E. H. Buhl, K. Halasy, et al., “Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons,” Nature, 378, No. 6552, 75–78 (1995), https://doi.org/10.1038/378075a0.

    Article  CAS  PubMed  Google Scholar 

  17. R. Miles, K. Tóth, A. I. Gulyás, et al., “Differences between somatic and dendritic inhibition in the hippocampus,” Neuron, 16, No. 4, 815–823 (1996).

    Article  CAS  Google Scholar 

  18. V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, “Parvalbumin neurons and gamma rhythms enhance cortical circuit performance,” Nature, 459, No. 7247, 698–702 (2009), https://doi.org/10.1038/nature07991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. G. Buzsáki and X. J. Wang, “Mechanisms of gamma oscillations,” Annu. Rev. Neurosci., 35, 203–225 (2003), https://doi.org/10.1146/annurev-neuro-062111-150444.

    Article  CAS  Google Scholar 

  20. M. Bartos, I. Vida, and P. Jonas, “Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks,” Nat. Rev. Neurosci., 8, No. 1, 45–56 (2007), https://doi.org/10.1038/nrn2044.

    Article  CAS  PubMed  Google Scholar 

  21. E. O. Mann and O. Paulsen, “Role of GABAergic inhibition in hippocampal network oscillations,” Trends Neurosci., 30, No. 7, 343–349 (2007), https://doi.org/10.1016/j.tins.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  22. D. Senkowski and J. Gallinat, “Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia,” Biol. Psychiatry, 77, No. 12, 1010–1019 (2015), https://doi.org/10.1016/j.biopsych.2015.02.034.

    Article  PubMed  Google Scholar 

  23. V. B. Strelets, V. Yu. Novototskii-Vlasov, and Zh. V. Golikova, “Cortical connections in schizophrenia patients with positive and negative symptoms,” Zh. Vyssh. Nerv. Deyat., 51, No. 4, 452–460 (2001).

    CAS  Google Scholar 

  24. G. Gonzalez-Burgos, R. Y. Cho, and D. A. Lewis, “Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia,” Biol. Psychiatry, 77, No. 12, 1031–1040 (2003), https://doi.org/10.1016/j.biopsych.2015.03.010.

    Article  CAS  Google Scholar 

  25. S. Akbarian and H. S. Huang, “Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders,” Brain Res. Rev., 52, No. 2, 293–304 (2006), https://doi.org/10.1016/j.brainresrev.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  26. G. Gonzalez-Burgos, T. Hashimoto, and D. A. Lewis, “Alterations of cortical GABA neurons and network oscillations in schizophrenia,” Curr. Psychiatry Rep., 12, No. 4, 335–344 (2003), https://doi.org/10.1007/s11920-010-0124-8.

    Article  Google Scholar 

  27. T. Hashimoto, D. Arion, T. Unger, et al., “Alterations in GABArelated transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia,” Mol. Psychiatry, 13, No. 2, 147–161 (2003), https://doi.org/10.1038/sj.mp.4002011.

    Article  CAS  Google Scholar 

  28. S. Heckers, D. Stone, J. Walsh, et al., “Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia,” Arch. Gen. Psychiatry, 59, No. 6, 521–529 (2003).

    Article  Google Scholar 

  29. S. Akbarian, J. J. Kim, S. G. Potkin, et al., “Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics,” Arch. Gen. Psychiatry, 52, No. 4, 258–266 (2003).

    Article  Google Scholar 

  30. T. Hashimoto, D. W. Volk, S. M. Eggan, et al., “Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia,” J. Neurosci., 23, No. 15, 6315–6326 (2003).

    Article  CAS  Google Scholar 

  31. J. F. Enwright III, Z. Huo, D. Arion, et al., “Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia,” Mol. Psychiatry, 23, No. 7, 1606–1613 (2017), https://doi.org/10.1038/mp.2017.216.

    Article  CAS  PubMed Central  Google Scholar 

  32. A. J. Pocklington, E. Rees, J. T. Walters, et al., “Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia,” Neuron, 86, No. 5, 1203–1214 (2015), https://doi.org/10.1016/j.neuron.2015.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. A. Lewis, A. A. Curley, J. R. Glausier, and D. W. Volk, “Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia,” Trends Neurosci., 35, No. 1, 57–67 (2003), https://doi.org/10.1016/j.tins.2011.10.004.

    Article  CAS  Google Scholar 

  34. S. Pajevic, P. J. Basser, and R. D. Fields, “Role of myelin plasticity in oscillations and synchrony of neuronal activity,” Neuroscience, 276, 135–147 (2014), https://doi.org/10.1016/j.neuroscience.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  35. S. A. Anderson, O. Marin, C. Horn, et al., “Distinct cortical migrations from the medial and lateral ganglionic eminences,” Development, 128, No. 3, 353–363 (2003).

    Google Scholar 

  36. W. He, C. Ingraham, L. Rising, et al., “Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis,” J. Neurosci., 21, No. 22, 8854–8862 (2003).

    Article  Google Scholar 

  37. K. Letinic, R. Zoncu, and P. Rakic, “Origin of GABAergic neurons in the human neocortex,” Nature, 417, No. 6889, 645–649 (2002), https://doi.org/10.1038/nature00779.

    Article  CAS  PubMed  Google Scholar 

  38. G. Xu, K. G. Broadbelt, R. L. Haynes, et al., “Late development of the GABAergic system in the human cerebral cortex and white matter,” J. Neuropathol. Exp. Neurol., 70, No. 10, 841–858 (2011), https://doi.org/10.1097/NEN.0b013e31822f471c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Voronova, S. A. Yuzwa, B. S. Wang, et al., “Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain,” Neuron, 94, No. 3, 500–516.e9 (2017), https://doi.org/10.1016/j.neuron.2017.04.018.

    Article  CAS  PubMed  Google Scholar 

  40. D. Orduz, P. P. Maldonado, M. Balia, et al., “Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex,” eLife, 4 (2015), https://doi.org/10.7554/eLife.06953.

  41. R. Káradóttir, P. Cavelier, L. H. Bergersen, and D. Attwell, “NMDA receptors are expressed in oligodendrocytes and activated in ischaemia,” Nature, 438, No. 7071, 1162–1166 (2005), https://doi.org/10.1038/nature04302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Zonouzi, J. Scafidi, P. Li, et al., “GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury,” Nat. Neurosci., 18, No. 5, 674–682 (2015), https://doi.org/10.1038/nn.3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Le Magueresse and H. Monyer, “GABAergic interneurons shape the functional maturation of the cortex,” Neuron, 77, No. 3, 388–405 (2013), https://doi.org/10.1016/j.neuron.2013.01.011.

    Article  CAS  PubMed  Google Scholar 

  44. P. Somogyi and I. Soltész, “Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat’s visual cortex,” Neuroscience, 19, No. 4, 1051–1065 (1986).

    Article  CAS  Google Scholar 

  45. J. DeFelipe, S. H. Hendry, and E. G. Jones, “A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory-motor cortex,” Neuroscience, 17, No. 4, 991–1009 (1986).

    Article  CAS  Google Scholar 

  46. W. Y. Ong, T. T. Yeo, V. J. Balcar, and L. J. Garey, “A light and electron microscopic study of GAT-1-positive cells in the cerebral cortex of man and monkey,” J. Neurocytol., 27, No. 10, 719–3083 (1998).

    Article  CAS  Google Scholar 

  47. S. H. Hendry, C. R. Houser, E. G. Jones, and J. E. Vaughn, “Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex,” J. Neurocytol., 12, No. 4, 639– 660 (1983).

    Article  CAS  Google Scholar 

  48. L. Seress, A. I. Gulyás, I. Ferrer, et al., “Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation,” J. Comp. Neurol., 337, No. 2, 208–230 (1993).

    Article  CAS  Google Scholar 

  49. K. D. Micheva, D. Wolman, B. D. Mensh, et al., A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons,” eLife, 5, e15784 (2016), https://doi.org/10.7554/eLife.15784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. M. Butt, N. Hamilton, P. Hubbard, et al., “Synantocytes: the fifth element,” J. Anat., 207, No. 6, 695–706 (2005), https://doi.org/10.1111/j.1469-7580.2005.00458.x.

    Article  PubMed  PubMed Central  Google Scholar 

  51. J. J. Boulanger and C. Messier, “Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: Unbiased stereological analysis,” Neuroscience, 362, 127–140 (2017), https://doi.org/10.1016/j.neuroscience.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  52. E. Boda and A. Buffo, “Beyond cell replacement: unresolved roles of NG2-expressing progenitors,” Front. Neurosci., 8, 122 (2014), https://doi.org/10.3389/fnins.2014.00122.

    Article  PubMed  PubMed Central  Google Scholar 

  53. M. Inan, M. Zhao, M. Manuszak, et al., “Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability,” Neurobiol. Dis., 93, 35–46 (2016), https://doi.org/10.1016/j.nbd.2016.04.004.

    Article  CAS  PubMed  Google Scholar 

  54. N. A. Uranova, M. F. Casanova, N. M. DeVaughn, et al., “Ultrastructural alterations of synaptic contacts and astrocytes in postmortem caudate nucleus of schizophrenic patients,” Schizophr. Res., 22, No. 1, 81– 83 (1996).

    Article  CAS  Google Scholar 

  55. N. A. Uranova, D. Orlovskaya, O. V. Vikhreva, et al., “Electron microscopy of oligodendroglia in severe mental illness,” Brain Res. Bull., 55, No. 5, 597–610 (2001).

    Article  CAS  Google Scholar 

  56. N. A. Uranova, D. D. Orlovskaia, O. V. Vikhreva, et al., “Morphometric assessment of ultrastructural plastic rearrangements in the brain in endogenous psychoses (responses of the oligodendroglia),” Vestn. Ross. Akad. Med. Nauk, 7, 42–48 (2001).

    Google Scholar 

  57. N. A. Uranova, O. V. Vikhreva, V. I. Rachmanova, and D. D. Orlovskaya, “Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study,” Schizophr. Res. Treatment, 325789 (2011), https://doi.org/10.1155/2011/325789.

  58. O. V. Vikhreva, V. I. Rakhmanova, D. D. Orlovskaya, and N. A. Uranova, “Ultrastructural alterations of oligodendrocytes in prefrontal white matter in schizophrenia: A post-mortem morphometric study,” Schizophr. Res., 177, No. 1–3, 28–36 (2016), https://doi.org/10.1016/j.schres.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  59. O. V. Vikhreva, V. I. Rakhmanova, D. D. Orlovskaya, and N. A. Uranova, “Ultrastructural pathology of oligodendrocytes in the white matter in relapsing-progressive schizophrenia and the role of the microglia,” Zh. Nevrol. Psikhiat., 118, No. 5, 69–74 (2018), https://doi.org/10.17116/jnevro20181185169.

    Article  CAS  Google Scholar 

  60. N. A. Uranova, N. S. Kolomeets, O. V. Vikhreva, et al., “Ultrastructural pathology of myelin fibers in schizophrenia,” Zh. Nevrol. Psikhiat., 113, No. 9, 63–69 (2013).

    CAS  Google Scholar 

  61. C. L. Beasley, Z. J. Zhang, I. Patten, and G. P. Reynolds, “Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins,” Biol. Psychiatry, 52, 708–715 (2002).

    Article  CAS  Google Scholar 

  62. V. M. Vostrikov, N. A. Uranova, and D. D. Orlovskaya, “Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders,” Schizophr. Res., 94, 273–280 (2007), https://doi.org/10.1016/j.schres.2007.04.014.

    Article  PubMed  Google Scholar 

  63. S. Kim and M. J. Webster, “Correlation analysis between genomewide expression profi les and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders,” Mol. Psychiatry, 15, 326–336 (2010), https://doi.org/10.1038/mp.2008.99.

    Article  CAS  PubMed  Google Scholar 

  64. T. White, V. A. Magnotta, H. J. Bockholt, et al., “Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study,” Schizophr. Bull., 37, No. 1, 222–232 (2011), https://doi.org/10.1093/schbul/sbp088.

    Article  PubMed  Google Scholar 

  65. P. Alvarado-Alanis, P. León-Ortiz, F. Reyes-Madrigal, et al., “Abnormal white matter integrity in antipsychotic-naive first-episode psychosis patients assessed by a DTI principal component analysis,” Schizophr. Res., 162, No. 1–3, 14–21 (2015), https://doi.org/10.1016/j.schres.2015.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Vostrikov.

Additional information

V. M. Vostrikov is deceased

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 119, No. 8, Iss. 1, pp. 124–129, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostrikov, V.M. Neuromorphological Aspects of the GABAergic Hypothesis of the Pathogenesis of Schizophrenia. Neurosci Behav Physi 50, 663–668 (2020). https://doi.org/10.1007/s11055-020-00952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00952-9

Keywords

Navigation