Skip to main content
Log in

Effects of a Trace Amine-Associated Receptor TAAR5 Agonist as a Model of Schizophrenia Using Electrocorticography Data from Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Chronic experiments on rats were run to evaluate the effects of the substance α-NETA, a trace amine-associated receptor TAAR5 agonist, on the electrocorticogram (ECoG). Changes in the spectral power of the main ECoG rhythms were assessed, as was spatial synchronization in the γ range, because of the role of γ oscillations in the transmission of information between regions presumptively affected in schizophrenia. Adult male Wistar rats underwent implantation of six nichrome electrodes into the cerebral cortex of both hemispheres in two rows of three, with the aim of assessing the topography of the whole cortex. A total of 20 experiments were conducted: animals in 10 experiments received systemic doses of α-NETA, while in the other 10 animals received physiological saline. Injections of α-NETA increased power in the δ range (0–5 Hz) and there was a linked decrease in power in the range 5–10 Hz. The greatest differences were seen in the first 10 min. No changes occurred after administration of physiological saline. Increases in slow waves were accompanied by decreases in spatial synchronization of γ oscillations between all six recording points from the pre-injection baseline as compared with controls. All effects were more marked in the anterior zones of the cortex. The results suggest that α-NETA alters dopamine transmission via infl uences on TAAR5, which in turn disrupts glutamatergic transmission, leading to dysfunction in γ synchronization, as occurs in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. Kanunikov, P. E. Lamkin, and D. R. Belov, “Indicators of EEG spatial synchronization in schoolchildren 10–12 years old in normal and with learning diffi culties,” Ros. Fiziol. Zh., 85, No. 3, 360–371 (1999).

    CAS  Google Scholar 

  2. M. N. Livanov, Spatial Synchronization of Brain Biopotentials, Nauka, Moscow (1973).

    Google Scholar 

  3. M. N. Livanov and N. E. Sviderskaya, “ Psychological aspects of the phenomenon of the spatial synchronization of potentials,” Psikhol. Zh., 5, No. 5, 71–83 (1984).

    Google Scholar 

  4. N. E. Sviderskaya, Synchronous Electrical Activity of the Brain and Mental Processes, Nauka, Moscow (1987).

    Google Scholar 

  5. A. N. Shepovalnikov, M. N. Tsitseroshin, L. G. Zaitseva, and E. I. Galperina, “Features of systemic interaction of different cortical areas of the left and right cerebral hemispheres in different sleep stages in humans,” Ros. Fiziol. Zh., 8, No. 10, 1228–1241 (2012).

    Google Scholar 

  6. A. Abi-Dargham, J. Rodenhiser, D. Printz, et al., “Increased baseline occupancy of D2-receptors by dopamine in schizophrenia,” Proc. Natl. Acad. Sci. USA, 97, No. 14, 8104–8109 (2000).

    Article  CAS  Google Scholar 

  7. A. Abi-Dargham and O. Guillin, “Integrating the neurobiology of schizophrenia,” Int. Rev. Neurobiol., 78 (2007).

  8. A. A. Aleksandrov, V. M. Knyazeva, A. B. Volnova, et al., “Identification of TAAR5 agonist activity of alpha-NETA and its effect on mismatch negativity amplitude in awake rats,” Neurotox. Res., 34, No. 3, 442–451 (2018), doi: https://doi.org/10.1007/s12640-018-9902-6.

    Article  CAS  PubMed  Google Scholar 

  9. A. A. Aleksandrov, E. S. Dmitrieva, A. B. Volnova, et al., “TAAR5 receptor agonist affects sensory gating in rats,” Neurosci. Lett., 666, No. 14, 144–147 (2018).

    Article  CAS  Google Scholar 

  10. F. M. Benes, B. Lim, D. Matzilevich, et al., “Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars,” Proc. Natl. Acad. Sci. USA, 104, 10,164–10,169 (2007).

    Article  CAS  Google Scholar 

  11. B. Borowsky, N. Adham, K. A. Jones, et al., “Trace amines: identification of a family of mammalian G protein-coupled receptors,” Proc. Natl. Acad. Sci. USA, 98, 8966–8971 (2001).

    Article  CAS  Google Scholar 

  12. S. A. Burchett and T. P. Hicks, “The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain,” Prog. Neurobiol., 79, No. 5–6, 223–246 (2006).

    Article  CAS  Google Scholar 

  13. G. Buzsdki, “Neural syntax: Cell assemblies, synapsembles, and readers,” Neuron, 68, No. 3, 362–385 (2010).

  14. G. Buzsáki and X.-J. Wang, “Mechanisms of gamma oscillations,” Annu. Rev. Neurosci., 35, 203–225 (2012).

    Article  Google Scholar 

  15. J. A. Cardin, M. Carlten, K. Meletis, et al., “Driving fast-spiking cells induces gamma rhythm and controls sensory responses,” Nature, 459, No. 7247, 663–667 (2009).

  16. R. R. Gainetdinov, A. R. Mohn, and M. G. Caron, “Genetic animal models: focus on schizophrenia,” Trends Neurosci., 24, No. 9, 527–533 (2001).

    Article  CAS  Google Scholar 

  17. J. Gallinat, G. Winterer, C. S. Herrmann, and D. Senkowski, “Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing,” Clin. Neurophysiol., 115, 1863–1874 (2004).

    Article  Google Scholar 

  18. G. Gonzalez-Burgos and D. A. Lewis, “GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia,” Schizophr. Bull., 34, 944–961 (2008).

    Article  Google Scholar 

  19. K. L. Graham, J. V. Zhang, S. Lewen, et al., “A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune infl ammatory disease,” PLoS One, 9, No. 12, e112925 (2014).

  20. O. Guillin, A. Abi-Dargham, and M. Laruelle, “Neurobiology of dopamine in schizophrenia,” Int. Rev. Neurobiol., 78, 1–39 (2007).

    Article  CAS  Google Scholar 

  21. A. L. Halberstadt, “The phencyclidine-glutamate model of schizophrenia,” Clin. Neuropharmacol., 18, 237–249 (1995).

    Article  CAS  Google Scholar 

  22. L. E. Hong, A. Summerfelt, R. McMahon, et al., “Evoked gamma band synchronization and the liability for schizophrenia,” Schizophr. Res., 70, 293–302 (2004).

    Article  Google Scholar 

  23. O. Howes, R. McCutcheon, and J. Stone, “Glutamate and dopamine in schizophrenia: an update for the 21st century,” J. Psychopharmacol., 29, No. 2, 97–115 (2015).

    Article  Google Scholar 

  24. A. V. Klimash, M. N. Tsitseroshin, A. N. Shepovalnikov, et al., “Disorders of the spatiotemporal organization of the brain’s bioelectrical activity in patients with different depressions of consciousness after severe head injury,” Human Physiol., 36, No. 5, 535–549 (2010).

    Article  Google Scholar 

  25. B. Kocsis, “Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant co rtical gamma oscillations,” Biol. Psychiatry, 71, 987–995 (2012).

    Article  CAS  Google Scholar 

  26. B. Kolb, “Functions of the frontal cortex of the rat: a comparative review,” Brain Res., 320, No. 1, 65–98 (1984).

    Article  CAS  Google Scholar 

  27. D. O. Kutsenko, A. A. Ivonin, V. T. Shuvaev, et al., “Spatial structure of EEG in depression patients with co-occurring anxiety disorders,” Human Physiol., 41, No. 1, 34–38 (2015).

    Article  Google Scholar 

  28. J. S. Kwon, B. F. O’Donnell, G. V. Wallenstein, et al., “Gamma frequency- range abnormalities to auditory stimulation in schizophrenia,”,Arch. Gen. Psychiatry, 56, 1001–1005 (1999).

    Article  CAS  Google Scholar 

  29. D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and schizophrenia,” Nat. Rev. Neurosci., 6, No. 4, 312–324 (2005).

    Article  CAS  Google Scholar 

  30. D. A. Lewis, A. A. Curley, J. R. Glausier, and D. W. Volk, “Neuropsychiatric disorders cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia,” Trends Neurosci., 35, No. 1, 57–67 (2012).

    Article  CAS  Google Scholar 

  31. G. A. Light, J. L. Hsu, M. H. Hsieh, et al., “Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients,” Biol. Psychiatry, 60, 1231–1240 (2006).

    Article  Google Scholar 

  32. L. Lindemann and M. C. Hoener, “A renaissance in trace amines inspired by a novel GPCR family,” TiPS, 25, 274–281 (2005).

    Google Scholar 

  33. D. J. Lodge and A. A. Grace, “Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia,” Behav. Brain Res., 204, 306–312 (2009).

    Article  CAS  Google Scholar 

  34. B. F. O’Donnel, W. P. Hetrick, J. L. Vohs, et al., “Neural synchronizationdeficits to auditory stimulation in bipolar disorder,” Neuroreport, 15, 1369–1372 (2004).

    Article  Google Scholar 

  35. K. G. Phillips, M. C. Cotel, A. P. McCarthy, et al., “Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia,” Neuropharmacology, 62, 1359–1370 (2012).

    Article  CAS  Google Scholar 

  36. R. T. Premont, R. R. Gainetdinov, and M. G. Caron, “Following the trace of elusive amines,” Proc. Natl. Acad. Sci. USA, 98, No. 17, 9474–9475 (2001).

    Article  CAS  Google Scholar 

  37. T. M. Preuss, “Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered,” J. Cogn. Neurosci., 7, No. 1, 1–24 (1995).

    Article  CAS  Google Scholar 

  38. T. Sakurai, N. J. Gamo, T. Hikida, et al., “Converging models of schizophrenia-network alterations of prefrontal cortex underlying cognitive impairments,” Progr. Neurobiol., 134, 178–201 (2015).

    Article  Google Scholar 

  39. Y.-W. Shin, B. F. O’Donnell, S. Youn, and J. S. Kwon, “Gamma oscillation in schizophrenia,” Psychiatry Investig., 8, 288–296 (2011).

    Article  Google Scholar 

  40. A. A. Simen, R. DiLeone, and A. Arnsten, “Primate models of schizophrenia: future possibilities,” Genetic Models Schizophrenia, 179, 117–125 (2009).

    Article  CAS  Google Scholar 

  41. V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, “Parvalbumin neurons and gamma rhythms enhance cortical circuit performance,” Nature, 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  42. R. D. Traub, “Fast oscillations,” Scholarpedia, 1, No. 12, 1764 (2006).

  43. P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, 52, No. 1, 155–168 (2006).

  44. P. J. Uhlhaas and W. Singer, “Abnormal neural oscillations and synchrony in schizophrenia,” Nature Rev. Neurosci., 11, No. 2, 100–113 (2010).

    Article  CAS  Google Scholar 

  45. H. B. Uylings, H. J. Groenewegen, and B. Kolb, “Do rats have a prefrontal cortex?” Behav. Brain Res., 146, No. 1–2, 3–17 (2003).

    Article  Google Scholar 

  46. C. Von der Malsburg, “Binding in models of perception and brain function,” Curr. Opin. Neurobiol., 5, 520–526 (1995).

    Article  Google Scholar 

  47. D. R. Weinberger and P. J. Harrison, “Dopamine and schizophrenia,” in: Schizophrenia, A. Abi-Dargham and A. Grace (eds.), Wiley Online Library (2011).

  48. S. Williams and P. Boksa, “Gamma oscillations and schizophrenia,” J. Psychiatry Neurosci., 35, No. 2, 75–77 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Belov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 104, No. 11, pp. 1275–1290, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, D.R., Fesenko, Z.S., Lakstygal, A.M. et al. Effects of a Trace Amine-Associated Receptor TAAR5 Agonist as a Model of Schizophrenia Using Electrocorticography Data from Rats. Neurosci Behav Physi 50, 335–344 (2020). https://doi.org/10.1007/s11055-020-00905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00905-2

Keywords

Navigation