Skip to main content

Advertisement

Log in

Group and Individual fMRI Analysis of the Main Resting State Networks in Healthy Subjects

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Analysis of fMRI in the resting state (RS) is a suitable methodological approach to studying basal levels of functional brain activity in humans in health and disease. The inadequate development of this direction in Russia is partly due to the small number of Russian publications describing approaches to data processing. This study uses an algorithm for analysis of fMRI signals in the RS based on independent components analysis (ICA) run in the FSL environment and used for studies of typical functional resting state networks (RSN) in health. Averaging observation data by group, which is applicable for studies of healthy people, is often not appropriate for studies of different forms of cerebral pathology, which are characterized by significantly greater levels of variation in hemodynamics. Thus, studies of 17 healthy subjects included comparative evaluation of the topography and a number of quantitative measures of typical RSN identified by group and individual analysis of fMRI signals. These networks were comparable with RSN described in the literature as main and were also reproducible in group and individual analysis, which confirms the suitability, reliability, and effectiveness of using this algorithm. Individual analysis of RSN identified variability linked with a number of psychophysiological characteristics of healthy subjects (sex, motor asymmetry profile, EEG pattern), partly explaining the different levels of compliance with the patterns of the group networks. Results obtained from individual fMRI and EEG comparisons showed the potential of analysis of the topography of the sources of individual rhythms as EEG markers for RSN. The lowest levels of variability of fMRI characteristics of resting networks in health (such as maximum network activation intensity, mean frequency of the active zone of the spectrum, frequency of dominant peak) may have diagnostic value for studies of RSN in pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. A., Erhardt, E. B., Damaraju, E., et al., “A baseline for the multivariate comparison of resting-state networks,” Front. Syst. Neurosci., 5, 1–19 (2011).

    Google Scholar 

  • Babiloni, C., Del Percio, C., Caroli, A., et al., “Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer’s disease: an EEG-PET study,” Neurobiol. Aging, 48, 122–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Balaev, V., Petrushevsky, A., and Martynova, O., “Functional connectivity in chronic stroke compared with normal aging changes,” in: Materials of the CCCP Workshop, National Research University Higher School of Economics, Moscow, Russia, December 2014, p. 12.

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M., “Investigations into resting-state connectivity using independent component analysis,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, 1001–1013 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., et al., “Toward discovery science of human brain function,” Proc. Natl. Acad. Sci. USA, 107, 4734– 4739 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S., “Functional connectivity in the motor cortex of resting human brain using echoplanar MRI,” Magn. Reson. Med., 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bizyuk, A. P., A Compendium of Methods for Neuropsychological Studies, Rech, St. Petersburg (2005)

    Google Scholar 

  • Boldyreva, G. N., Sharova, E. V., and Dobronravova, I. S., “The role of regulatory structures in forming the human EEG,” Fiziol. Cheloveka, 5, 19–34 (2000).

    Google Scholar 

  • Bonavita, S., Gallo, A., Sacco, R., et al., “Distributed changes in defaultmode resting-state connectivity in multiple sclerosis,” Mult. Scler., 17, 411–422 (2011).

    Article  PubMed  Google Scholar 

  • Bonhomme, V., Vanhaudenhuyse, A., Demertzi, A., et al., “Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers,” Anesthesiology, 125, No. 5, 873–888 (2016).

    Article  PubMed  Google Scholar 

  • Bragina, N. N. and Dobrokhotova, T. A., Functional Asymmetry in Humans, Meditsina, Moscow (1981).

    Google Scholar 

  • Calhoun, V. D., Adali, T., and Pekar, J. J., “A method for comparing group fMRI data using independent component analysis: Application to visual, motor and visuomotor tasks,” Magn. Reson. Imaging, 22, 1181–1191 (2004).

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Kiehl, K. A., and Pearlson, G. D., “Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks,” Hum. Brain Mapp., 29, 828–838 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbetta, M. and Shulman, G. L., “Control of goal-directed and stimulusdriven attention in the brain,” Nat. Rev. Neurosci., 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cordes, D., Haughton, V. M., Arfanakis, K., et al., “Mapping functionally related regions of brain with functional connectivity MR imaging,” Am. J. Neuroradiol., 21, 1636–1644 (2000).

    CAS  PubMed  Google Scholar 

  • Dumas, E. M., van den Bogaard Simon, J. A., Hart, E. P., et al., “Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease,” Neuroimage Clin., 2, 377–384 (2013), doi: https://doi.org/10.1016/j.nicl.2013.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S., “Functional connectivity: the principal-component analysis of large (PET) data sets,” J. Cereb. Blood Flow Metab., 13, No. 1, 5–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Gavron, A. A., Sharova, E. V., Abdulaev, A. A., et al., “Our experience of the comparative fMRI resting state (RS) analysis in normal subjects and patients with severe traumatic brain injury (TBI) according the algorithm of independent components analysis (ICA),” in: Abstr. 15th Europ. Congr. on Clinical Neurophysiology, Brno, Czech Republic, Sept.–Oct. 2015, p. 213

  • Gavron, A. A., Sharova, E. V., Smirnov, A. S., et al., “Use of an independent components algorithm for analysis of fMRI in the resting state in humans in health and disease,” in: Proc. 6th Troitskii Conf. Medical Physics and Innovations in Medicine, Troitsk, Moscow, June, 2014, pp. 22–24.

  • Golestani, A. M. and Goodyear, B. G., “Regions of interest for restingstate fMRI analysis determined by inter-voxel cross-correlation,” Neuroimage, 56, No. 1, 246–251 (2011).

    Article  PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V., “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. USA, 100, No. 1, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gusnard, D. A., Akbudak, E., Shulman, G. L., and Raichle, M. E., “Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function,” Proc. Natl. Acad. Sci. USA, 98, No. 7, 4259–4264 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen, A. and Oja, E., “Independent component analysis: algorithms and applications,” Neural Netw., 13, No. 4–5, 411–430 (2000).

    Article  PubMed  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., et al., “FSL,” NeuroImage, 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  • Kataeva, G. V., Korotkov, A. D., Kireev, M. V., and Medvedev, S. V., “Factor structure of values of regional brin blood vlow and the rate of glucose metabolism as a tool for studying the default mode of the brain,” Fiziol. Cheloveka, 39, No. 1, 60–66 (2013).

    Google Scholar 

  • Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., and Pylkova, L. V., “The default mode network and EEG alpha oscillations: An independent component analysis,” Brain Res., 1402, 67–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. H., Smyser, C. D., and Shimony, J. S., “Resting-state fMRI: A review of methods and clinical applications,” AJNR Am. J. Neuroradiol., 34, 1866–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lowe, M. J., Phillips, M. D., Lurito, J. T., et al., “Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fl uctuations indicate reduced functional connectivity initial results,” Radiology, 224, 184–192 (2002).

    Article  PubMed  Google Scholar 

  • Martynova, O. V., Sushinskaya-Tetereva, A. O., Balaev, V. V., and Ivanitskii, A. M., “Correlation of functional connectivity of brain areas active in the resting state with behavioral and psychological indicators,” Zh. Vyssh. Nerv. Deyat., 66, No. 5, 541–555 (2016).

    CAS  Google Scholar 

  • Medvedev, S. V., Pakhomov, S. V., Rudas, M. S., et al., “Selection of the resting state as reference for psychological tests,” Fiziol. Cheloveka, 22, No. 1, 5–15 (1996).

    PubMed  Google Scholar 

  • Pan Wang, Bo Zhou, Hongxiang Yao, et al., “Aberrant intra- and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment,” Sci. Rep., 5, 14,824, 1–12 (2015), doi: https://doi.org/10.1038/srep14824.

    Article  CAS  Google Scholar 

  • Pool, E. M., Rehme, A. K., Eickhoff, S. B., et al., “Functional resting-state connectivity of the human motor network: Differences between right- and left-handers,” NeuroImage, 109, 298–306 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E. and Mintun, M. A., “Brain work and brain imaging,” Annu. Rev. Neurosci., 29, 449–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E., “Two views of brain function,” Trends Cogn. Sci., 14, 180– 190 (2010).

    Article  PubMed  Google Scholar 

  • Rocca, M. A., Valsasina, P., Absinta, M., et al., “Default-mode network dysfunction and cognitive impairment in progressive MS,” Neurology, 74, 1252–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rosazza, C. and Minati, L., “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci., 32, No. 5, 773–785 (2011).

    Article  PubMed  Google Scholar 

  • Rusinov, V. S. (ed.), Clinical Electroencephalography, Meditsina, Moscow (1973).

    Google Scholar 

  • Schöpf, V., Windischberger, C., Kasess, C. H., et al., “Group ICA of resting-state data: a comparison,” MAGMA, 23, No. 5–6, 317–325 (2010).

    Article  PubMed  Google Scholar 

  • Sharova, E. V., Shendyapina, M. V., Boldyreva, G. N., et al., “Analysis of individual variation in fMRI responses in healthy subjects on opening of the eyes and motor and speech tasks,” Fiziol. Cheloveka, 41, No. 1, 5–16 (2015).

    CAS  PubMed  Google Scholar 

  • Shtark, M. B., Korostyshevskaya, A. M., Rezakova, M. V., and Savelov, A. A., “Functional magnetic resonance imaging and neurosciences,” Usp. Fiziol. Nauk., 43, No. 1, 3–29 (2012).

    CAS  PubMed  Google Scholar 

  • Slavutskaya, A. V., Gerasimenko, N. Yu., and Mikhailova, E. S., “Recognition of spatial transformations of fi gures by men and women: analysis of behavior and evoked potentials,” Fiziol. Cheloveka, 38, No. 3, 18–29 (2012).

    Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., et al., “Correspondence of the brain’s functional architecture during activation and rest,” Proc. Natl. Acad. Sci. USA, 106, 13,040–13,045 (2009).

    Article  Google Scholar 

  • Tedeschi, G., Trojsi, F., Tessitore, A., et al., “Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis,” Neurobiol. Aging, 33, 886–898 (2012).

    Article  PubMed  Google Scholar 

  • Ushakov, V. L., Sharaev, M. G., Kartashov, S. I., et al., “Dynamic causal modeling of hippocampal links within the human default mode network: Lateralization and computational stability of effective connections,” Front. Hum. Neurosci., 10, 528 (2016), doi: https://doi.org/10.3389/fnhum.2016.00528.

  • Van Dijk, K. R., Hedden, T., Venkataraman, A., et al., “Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization,” J. Neurophysiol., 103, 297–321 (2010).

    Article  PubMed  Google Scholar 

  • Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L. J.-F., et al., “Default network connectivity refl ects the level of consciousness in non-communicative brain-damaged patients,” Brain, 133, No. 1, 161–171 (2010).

    Article  PubMed  Google Scholar 

  • Verkhlyutov, V. M., Sokolov, P. A., Ushakov, V. L., and Strelets, V. B., “Modification and dynamics of resting state networks on examination and imagination of videos,” in: Proc. 6th Int. Conf. on Cognitive Sciences, Kaliningrad, June 23–27, 2014, pp. 209–210.

  • Wang, D., Buckner, R. L., Fox, M. D., et al., “Parcellating cortical functional networks in individuals,” Nat. Neurosci., 18, No. 12, 1853– 1860 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widjaja, E., Zamyadi, M., Raybaud, C., et al., “Impaired default mode network on resting-state fMRI in children with medically refractory epilepsy,” AJNR Am. J. Neuroradiol., 34, 552–557 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Zhavoronkova, L. A., Right-Handed, Left-Handed. Interhemisphere Asymmetry in Human Brain Biopotentials, Ekoinvest, Krasnodar (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sharova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol., 69, No. 2, pp. 150–163, March–April, 2019. Original article submitted September 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavron, A.A., Deza-Araujo, Y.I., Sharova, E.V. et al. Group and Individual fMRI Analysis of the Main Resting State Networks in Healthy Subjects. Neurosci Behav Physi 50, 288–297 (2020). https://doi.org/10.1007/s11055-020-00900-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00900-7

Keywords

Navigation