Skip to main content
Log in

Neuroglobin in Purkinje Neurons in the Rate Cerebellum in Cholestasis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objective. To assess the neuroglobin content of cerebellar Purkinje cells during experimental cholestasis in rats. Materials and methods. Studies were performed on paraffin sections of the cerebellar cortex processed for immunohistochemical detection of neuroglobin in Purkinje neurons in 60 mongrel male rats weighing 200–250 g after experimental treatment. Experimental animals underwent ligation of the common bile duct, while control animals underwent sham operations not preventing physiological bile outflow into the duodenum. Results. After ligation of the common bile duct, the neuroglobin content in the perikarya of cerebellar Purkinje neurons showed wavelike changes: it initially decreased on experimental days 2–20 (with a minimum on days 5–10) in conditions of cholestasis and then increased on days 45–90 of natural recovery from cholestasis (with a maximum on day 45). Conclusions. Ligation of the common bile duct produced wavelike changes in the neuroglobin content in the perikarya of cerebellar Purkinje neurons, with a significant decrease in cholestasis and an increase on spontaneous recovery from cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Gilerovich, I. P. Grigor’ev, O. V. Kirik, et al., “Neuroglobin distribution in the human cerebellar cortex (an immunohistochemical study),” Morfologiya, 146, No. 4, 75–77 (2014).

    CAS  Google Scholar 

  2. S. V. Yemelyanchik and S. M. Zimatkin, The Brain in Cholestasis, Grodno State University, Grodno (2011).

    Google Scholar 

  3. S. V. Yemelyanchik and S. M. Zimatkin, “Structural and histochemical changes in the rat cerebellum Purkinje cells in cholestasis,” Morfologiya, 143, No. 2, 19–23 (2013).

    Google Scholar 

  4. S. V. Yemelyanchik and S. M. Zimatkin, “Structural and metabolic changes in parietal cortex neurons in rats subjected to biliary drainage,” Morfologiya, 141, No. 2, 7–12 (2012).

    Google Scholar 

  5. S. M. Zimatkin, O. V. Baraban, and S. V. Yemelyanchik, “Metabolic changes in rat brain histaminergic neurons during subhepatic cholestasis,” Morfologiya, 132, No. 4, 27–30 (2007).

    CAS  Google Scholar 

  6. D. E. Korzhevskii, E. G. Gilerovich, O. V. Kirik, et al., Immunohistochemical Studies of the Brain, D. E. Korzhevskii (ed.), SpetsLit, St. Petersburg (2016).

    Google Scholar 

  7. T. Burmester, B. Weich, S. Reinhardt, and T. Hankeln, “Vertebrate globin expressed in the brain,” Nature, 407, No. 6803, 520–523 (2000).

    Article  CAS  Google Scholar 

  8. L. Galluzzi, K. Blomgren, and G. Kroemer, “Mitochondrial membrane permeabilization in neuronal injury,” Nat. Rev. Neurosci., 10, No. 7, 481–494 (2009).

    Article  CAS  Google Scholar 

  9. R. C. Li, S. Z. Guo, S. K. Lee, and D. Gozal, “Neuroglobin protects neurons against oxidative stress in global ischemia,” J. Cereb. Blood Flow Metab., 30, No. 11, 1874–1882 (2010), doi: https://doi.org/10.1038/jcbfm.2010.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, 443, No. 7113, 787–795 (2006).

    Article  CAS  Google Scholar 

  11. J. R. Mansfield, “Multispectral imaging: a review of its technical aspects and applications in anatomic pathology,” Vet. Path., 51, No. 1, 185–210 (2014), doi: https://doi.org/10.1177/0300985813506918.

    Article  CAS  Google Scholar 

  12. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, London (2007), 6th ed.

    Google Scholar 

  13. С. Ren, P. Wang, B. Wang, et al., “Limb remote ischemic per-conditioning in combination with postconditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke,” Restor. Neurol. Neurosci., 33, No. 3, 369–379 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. J. M. Taylor, B. Kelley, E. J. Gregory, and N. E. Berman, “Neuroglobin overexpression improves sensorimotor outcomes in a mouse model of traumatic brain injury,” Neurosci. Lett., 577, 125–129 (2014).

    Article  CAS  Google Scholar 

  15. C. M. Van der Loos, “Multiple immunoenzyme staining: methods and visualizations for the observation with spectral imaging,” J. Histochem. Cytochem., 56, No. 4, 313–328 (2008), doi: https://doi.org/10.1369/jhc.2007.950170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. K. Xie and S. H. Yang, “Brain globins in physiology and pathology,” Med. Gas Res., 6, No. 3, 154–163 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yemelyanchik.

Additional information

Translated from Morfologiya, Vol. 155, No. 1, pp. 7–11, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yemelyanchik, S.V., Karnyushko, O.A. & Zimatkin, S.M. Neuroglobin in Purkinje Neurons in the Rate Cerebellum in Cholestasis. Neurosci Behav Physi 50, 253–256 (2020). https://doi.org/10.1007/s11055-019-00894-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00894-x

Keywords

Navigation