Skip to main content
Log in

Novel Approaches to the Molecular Mapping of the Brain: 3D Cyclic Immunohistochemistry and Optical Clearing

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review considers the current methods required for functional mapping of neural networks in 3D space with cellular resolution. Cyclic immunohistochemistry approaches and immunohistochemical staining methods for thick nervous tissue preparations are described in detail, along with approaches to clearing large brain formations to allow signals to be visualized at great depth. The main advantages and disadvantages of their use are considered. Perspectives for the development of molecular mapping for studies of the neural substrates of cognitive functions in health and disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, K. V., “Molecular scenarios for the consolidation of long-term memory,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 261–279 (1997).

    CAS  Google Scholar 

  • Aoyagi, Y., Kawakami, R., Osanai, H., et al., “A rapid optical clearing protocol using 2,2’-thiodiethanol for microscopic observation of fixed mouse brain,” PLoS One, 10, No. 1, e0116280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth, A. L., “Visualizing circuits and systems using transgenic reporters of neural activity,” Curr. Opin. Neurobiol., 17, No. 5, 567–571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker, K., Jährling, N., Saghafi, S., et al., “Chemical clearing and dehydration of GFP expressing mouse brains,” PLoS One, 7, No. 3, e33916 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, A. S., Lin, W. Y., Liu, H. P., et al., “Insect NMDA receptors mediate juvenile hormone biosynthesis,” Proc. Natl. Acad. Sci. USA, 99, No. 1, 37–42 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, K., Wallace, J., Kim, S. Y., et al., “Structural and molecular interrogation of intact biological systems,” Nature, 497, No. 7449, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, A. J., Saffen, D. W., Baraban, J. M., and Worley, P. F., “Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation,” Nature, 340, No. 6233, 474–476 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Denk, W. and Horstmann, H., “Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure,” PLoS Biol., 2, No. 11, e329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denk, W. and Svoboda, K., “Photon upmanship: why multiphoton imaging is more than a gimmick,” Neuron, 18, No. 3, 351–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Denk, W., Delaney, K. R., Gelperin, A., et al., “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neurosci. Meth, 54, No. 2, 151–162 (1994).

    Article  CAS  Google Scholar 

  • Dent, J. A., Polson, A. G., and Klymkowsky, M. W., “A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus,” Development, 105, No. 1, 61–74 (1989).

    CAS  PubMed  Google Scholar 

  • Dodt, H. U., Leischner, U., Schierloh, A., et al., “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods, 4, No. 4, 331–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ertürk, A., Becker, K., Jährling, N., et al., “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Protoc., 7, No. 11 1983–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Ertürk, A., Mauch, C. P., Hellal, F., et al., “Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury,” Nat. Med., 18, No. 1, 166–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Farivar, R., Zangenehpour, and S. Chaudhuri, A., “Cellular-resolution activity mapping of the brain using immediate-early gene expression,” Front. Biosci., 9, 104–109 (2004).

  • Gendusa, R., Scalia, C. R., Buscone, S., and Cattoretti, G., “Elution of high-affinity (>10–9 kD) antibodies from tissue sections: clues to the molecular mechanism And use in sequential immunostaining,” J. Histochem. Cytochem., 62, No. 7, 519–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes, M. J., Sevinsky, C. J., Sood, A., et al., “Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue,” Proc. Natl. Acad. Sci. USA, 110, No. 29, 11982–11987 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Glass, G., Papin, J. A., and Mandell, J. W., “SIMPLE: a sequential immunoperoxidase labeling and erasing method,” J. Histochem. Cytochem., 57, No. 10, 899–905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleave, J. A., Lerch, J. P., Henkelman, R. M., and Nieman, B. J., “A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells,” PLoS One, 8, No. 8, e72039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzowski, J. F., Timlin, J. A., Roysam, B., et al., “Mapping behaviorally relevant neural circuits with immediate-early gene expression,” Curr. Opin. Neurobiol., 15, No. 5, 599–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hama, H., Kurokawa, H., Kawano, H., et al., “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci., 14, No. 11, 1481–1488 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Helmchen, F. and Denk, W., “Deep tissue two-photon microscopy,” Nat. Methods, 2, No. 12, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Helmstaedter, M., Briggman, K. L., and Denk, W., “3D structural imaging of the brain with photons and electrons,” Curr. Opin. Neurobiol., 18, No. 6, 633–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hou, B., Zhang, D., Zhao, S., et al., “Scalable and DiI-compatible optical clearance of the mammalian brain,” Front. Neuroanat., 9, 19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahng, J. W. and Lee, J. H., “Activation of the hypothalamic-pituitary-adrenal axis in lithium-induced conditioned taste aversion learning,” Eur. J. Pharmacol., 768, 182–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ke, M. T., Fujimoto, S., and Imai, T., “SeeDB: a simple and morphology- preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci., 16, No. 8, 1154–1161 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Kolodziejczyk, E. and Baertschi, A. J., “Multiple immunolabeling in histology: a new method using thermo-inactivation of immunoglobulins,” J. Histochem. Cytochem., 34, No. 12, 1725–1729 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima, T., Sitko, A. A., Bhansali, P., et al., “ClearT: a detergent-and solvent-free clearing method for neuronal and non-neuronal tissue,” Development, 140, No. 6, 1364–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, H. Y., Mu, W., Nikolic-Paterson, D. J., and Atkins, C., “A novel, simple, reliable and sensitive method for multiple immunoenzyme staining: use of microwave oven heating to block antibody cross-reactivity and retrieve antigens,” J. Histochem. Cytochem., 43, No. 1, 97–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Lanahan, A. and Worley, P., “Immediate-early genes and synaptic function,” Neurobiol. Learn. Mem., 70, No. 1–2, 37–43 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhou, Y., and Gu, J., “Stain-Decolorize-stain (SDS, a new technique for multiple staining,” Histochem. Cell Biol., 141, No. 3, 251–262 (2014).

  • Lichtman, J. W., Livet, J., and Sanes, J. R., “A technicolour approach to the connectome,” Nat. Rev. Neurosci., 9, No. 6, 417–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H. H., Lai, J. S., Chin, A. L., et al., “A map of olfactory representation in the Drosophila mushroom body,” Cell, 128, No. 6, 1205–1217 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. A., Chen, Y., Chiang, A. S., et al., “Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system,” Neurogastroenterol. Motil., 23, No. 10, e446–457 (2011).

    Article  PubMed  Google Scholar 

  • Liu, Y. C. and Chiang, A. S., “High-resolution confocal imaging and three-dimensional rendering,” Methods, 30, No. 1, 86–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Livet, J., Weissman, T. A., Kang, H., et al., “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature, 450, No. 7166, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maleeva, H. E., Ivolgina, G. L., Anokhin, K. V., and Limborskaya, S. A., “Analysis of the expression of the c-fos oncogene in the rat cerebral cortex on learning,” Genetika, 25, 1119–1121 (1989).

    CAS  PubMed  Google Scholar 

  • Micheva, K. D. and Smith, S. J., “Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits,” Neuron, 55, No. 1, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane, P. K., “Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat,” J. Histochem. Cytochem., 16, No. 9, 557–560 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Okuno, H., “Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers,” Neurosci. Res., 69, No. 3, 175–186 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Parra, S. G., Chia, T. H., Zinter, J. P., and Levene, M. J., “Multiphoton microscopy of cleared mouse organs,” J. Biomed. Opt., 15, No. 3, 036017 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Parra, S. G., Vesuna, S. S., Murray, T. A., and Levene, M. J., “Multiphoton microscopy of cleared mouse brain expressing YFP,” J. Vis. Exp., 67, e3848 (2012).

    Google Scholar 

  • Pavlova, I. P., Shipley, S. C., Lanio, M., et al., “Optimization of immunolabeling and clearing techniques for indelibly labeled memory traces,” Hippocampus, 28, No. 7, 523–535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirici, D., Mogoanta, L., Kumar-Singh, S., et al., “Antibody elution method for multiple immunohistochemistry on primary antibodies raised in the same species and of the same subtype,” J. Histochem. Cytochem., 57, No. 6, 567–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkyně, J. E., Commentatio de Examine Physiologico Organi Visus et Systematis Cutanei, Univ. Breslau Press, Breslau, Prussia (1823).

    Google Scholar 

  • Renier, N., Wu, Z., Simon, D. J., et al., “iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging,” Cell, 159, No. 4, 896–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Roshchina, M. A., Ivashkina, O. I., and Anokhin, K. V., “Novel approaches to cognitive neurobiology: in vivo two-photon methods for visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat., 62, No. 2, 141–149 (2017).

    Google Scholar 

  • Saidov, Kh. M. and Anokhin, K. V., “Novel approaches to cognitive neurobiology: molecular labeling methods and ex vivo visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat., 67, No. 3, 259–272 (2017).

    Google Scholar 

  • Sillitoe, R. V. and Hawkes, R., “Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum,” J. Histochem. Cytochem., 50, No. 2, 235–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Susaki, E. A., Tainaka, K., Perrin, D., et al., “Whole-brain imaging with single-Cell resolution using chemical cocktails and computational analysis,” Cell, 157, No. 3, 726–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Tainaka, K., Kubota, S. I., Suyama, T. Q., et al., “Whole-body imaging with single-cell resolution by tissue decolorization,” Cell, 159, No. 4, 911–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Theer, P. and Denk, W., “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A. Opt. Image Sci. Vis., 23, No. 12, 3139–3149 (2006).

    Article  PubMed  Google Scholar 

  • Tomer, R., Ye, L., Hsueh, B., and Deisseroth, K., “Advanced CLARITY for rapid and high-resolution imaging of intact tissues,” Nat. Protoc., 9, 1682–1697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornehave, D., Hougaard, D. M., and Larsson, L., “Microwaving for doubl indirect immunofluorescence with primary antibodies from the same species and for staining of mouse tissues with mouse monoclonal antibodies,” Histochem. Cell Biol., 113, No. 1, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tóth, Z. E. and Mezey, E., “Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species,” J. Histochem. Cytochem., 55, No. 6, 545–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, P. S., Kaufhold, J. P., Blinder, P., et al., “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci., 29, No. 46, 1453–1470 (2009).

    Article  CAS  Google Scholar 

  • Van den Brand, M., Hoevenaars, B. M., Sigmans, J. H., et al., “Sequential immunohistochemistry: a promising new tool for the pathology laboratory,” Histopathology, 65, No. 5, 651–657 (2014).

    Article  PubMed  Google Scholar 

  • Wählby, C., Erlandsson, F., Bengtsson, E., and Zetterberg, A., “Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei,” Cytometry, 47, No. 1, 32–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Treweek, J. B., Kulkarni, R. P., et al., “Single-cell phenotyping within transparent intact tissue through whole-body clearing,” Cell, 158, No. 4, 945–958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel, W. R., Williams, R. M., and Webb, W. W., “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol, 21, No. 11, 1369–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zukor, K. A., Kent, D. T., and Odelberg, S. J., “Fluorescent whole-mount method for visualizing three-dimensional relationships in intact and regenerating adult newt spinal cords,” Dev. Dyn., 239, No. 11, 3048–3057 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Efimova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 6, pp. 747–758, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, O.I., Balaban, P.M. & Khaitovich, F.E. Novel Approaches to the Molecular Mapping of the Brain: 3D Cyclic Immunohistochemistry and Optical Clearing. Neurosci Behav Physi 50, 73–80 (2020). https://doi.org/10.1007/s11055-019-00871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00871-4

Keywords

Navigation