Skip to main content
Log in

Experimental Approaches to the Study of Behavioral Impairments Associated with Prenatal Exposure to Alcohol

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Fetal alcohol spectrum disorders (FASD) in children whose mothers consumed alcohol during pregnancy are characterized by a wide spectrum of anatomical and physical abnormalities, growth delay, and functional impairments to the nervous system. The most severe form of FASD is fetal alcohol syndrome, where these anomalies occur along with typical facial and cranial features and morphological changes to the brain. Despite widespread and numerous clinical studies, the basic mechanisms of FASD remain poorly investigated. Studies using experimental models of FASD play a key role in investigating the mechanisms of this pathology, providing for rapid studies of several generations of animals with monitoring of the contributions of social, environmental, and genetic factors to its development. This review addresses existing experimental approaches to studies of the behavioral aspects of FASD. Particular attention is paid to explorations of impairments to motor and executive functions, stress reactivity, learning, and memory – effects fundamentally similar in animals and children with FASD. The conclusion considers the important role of social and environmental factors in the early postnatal period in realizing the effects of prenatal alcoholization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lange, C. Probst, G. Gmel, et al., “Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis,” JAMA Pediatr., 171, No. 10, 948–956 (2017), https://doi.org/10.1001/jamapediatrics.2017.1919.

    Article  PubMed  PubMed Central  Google Scholar 

  2. R. J. Sokol, V. Delaney-Black, and B. Nordstrom, “Fetal alcohol spectrum disorder,” JAMA, 290, 2996–2999 (2003), https://doi.org/10.1001/jama.290.22.2996.

    Article  CAS  PubMed  Google Scholar 

  3. K. Nash, J. Rovet, R. Greenbaum, et al., “Identifying the behavioural phenotype in fetal alcohol spectrum disorder: sensitivity, specificity and screening potential,” Arch. Womens Ment. Health, 9, 181–186 (2006), https://doi.org/10.1007/s00737-006-0130-3.

    Article  CAS  PubMed  Google Scholar 

  4. P. W. Kodituwakku, “Defining the behavioral phenotype in children with fetal alcohol spectrum disorders: a review,” Neurosci. Biobehav. Rev., 31, 192–201 (2007), https://doi.org/10.1016/j.neubiorev.2006.06.020.

    Article  CAS  PubMed  Google Scholar 

  5. A. D. Spadoni, C. L. McGee, S. L. Fryer, et al., “Neuroimaging and fetal alcohol spectrum disorders,” Neurosci. Biobehav. Rev., 31, 239–245 (2007), https://doi.org/10.1016/j.neubiorev.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  6. J. Bertrand, L. L. Floyd, and M. K. Weber, “Guidelines for identifying and referring persons with fetal alcohol syndrome,” MMWR Recomm. Rep., 54, 1–14 (2005), https://doi.org/10.1037/e4911120.06-001.

    PubMed  Google Scholar 

  7. H. E. Hoyme, P. A. May, W. O. Kalberg, et al., “A practical clinical approach the diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 institute of medicine criteria,” Pediatrics, 115, 39–47 (2005), https://doi.org/doi.org/10.1542/peds.2005-0702.

    Article  PubMed  Google Scholar 

  8. P. D. Sampson, A. P. Streissguth, F. L. Bookstein, et al., “Incidence of fetal alcohol syndrome and prevalence of alcohol-related neurodevelopmental disorder,” Teratology, 56, 317–326 (1997), https://doi.org/doi.org/10.1002/(sici)1096-9926.

    Article  CAS  PubMed  Google Scholar 

  9. C. M. O’Leary, “Fetal alcohol syndrome: diagnosis, epidemiology, and developmental outcomes,” J. Pediatr. Child Health, 40, 2–7 (2004), https://doi.org/10.3109/9780203902172-16.

    Article  Google Scholar 

  10. P. A. May, J. P. Gossage, A. S. Marais, et al., “The epidemiology of fetal alcohol syndrome and partial FAS in a South African community,” Drug and Alcohol Depend., 88, 259–271 (2007), https://doi.org/10.1016/j.drugalcdep.2006.11.007.

    Article  Google Scholar 

  11. P. A. May, J. P. Gossage, A. S. Marais, et al., “Maternal risk factors for fetal alcohol syndrome and partial fetal alcohol syndrome in South Africa: a third study,” Alcohol Clin. Exp. Res., 32, 738–753 (2008), https://doi.org/10.1111/j.1530-0277.2008.00634.x.

    Article  PubMed  Google Scholar 

  12. P. A. May, J. P. Gossage, W. O. Kalberg, et al., “The prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies,” Dev. Disabil. Res. Rev., 15, 176–192 (2009), https://doi.org/10.1002/ddrr.68.

    Article  PubMed  Google Scholar 

  13. P. W. Kodituwakku, “Defining the behavioral phenotype in children with fetal alcohol spectrum disorders: a review,” Neurosci. Biobehav. Rev., 31, 192–201 (2007), https://doi.org/10.1016/j.neubiorev.2006.06.020.

    Article  CAS  PubMed  Google Scholar 

  14. A. P. Streissguth, J. M. Aase, S. K. Clarren, et al., “Fetal alcohol syndrome in adolescents and adults,” JAMA, 265, 1961–1967 (1991), https://doi.org/10.1001/jama.265.15.1961.

    Article  CAS  PubMed  Google Scholar 

  15. J. D. Thomas, C. R. Goodlett, and J. R. West, “Alcohol-induced Purkinje cell loss depends on developmental timing of alcohol exposure and correlates with motor performance,” Dev. Brain Res., 105, 159–166 (1998), https://doi.org/10.1016/s0165-3806(97)00164-8.

    Article  CAS  Google Scholar 

  16. S. N. Mattson, N. Crocker, and T. T. Nguyen, “Fetal alcohol spectrum disorders: neuropsychological and behavioral features,” Neuropsychol. Rev., 21, No. 2, 81–101 (2011), https://doi.org/10.1007/s11065-011-9167-9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. C. Rasmussen, V. Talwar, C. Loomes, et al., “Brief report: lie-telling in children with fetal alcohol spectrum disorder,” J. Pediatr. Psychol., 33, 220–225 (2007), https://doi.org/10.1093/jpepsy/jsm069.

    Article  PubMed  Google Scholar 

  18. A. P. Streissguth, F. L. Bookstein, H. M. Barr, et al., “A fetal alcohol behavior scale,” Alcohol Clin. Exp. Res., 22, 325–333 (1998), https://doi.org/10.1111/j.1530-0277.1998.tb03656.x.

    Article  CAS  PubMed  Google Scholar 

  19. A. M. Schonfeld, S. N. Mattson, and E. P. Riley, “Moral maturity and delinquency after prenatal alcohol exposure,” J. Stud. Alcohol, 66, 545–554 (2005), https://doi.org/10.15288/jsa.2005.66.545.

    Article  PubMed  Google Scholar 

  20. A. M. Schonfeld, B. Paley, F. Frankel, et al., “Executive functioning predicts social skills following prenatal alcohol exposure,” Child Neuropsychol., 12, 439–452 (2006), https://doi.org/10.1080/09297040600611338.

    Article  PubMed  Google Scholar 

  21. C. L. McGee, S. L. Fryer, O. A. Bjorkquist, et al., “Deficits in social problem solving in adolescents with prenatal exposure to alcohol,” Am. J. Drug Alcohol Abuse, 34, 423–431 (2008), https://doi.org/10.1080/00952990802122630.

    Article  PubMed  Google Scholar 

  22. I. P. Anokhina, L. N. Ovchinnikova, I. Y. Shamakina, et al., “Some neurobiological mechanisms of the effect of ethanol on offspring of chronically alcohol treated rats,” Ann. Med., 22, No. 5, 353–356 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. I. P. Anokhina, N. L. Vekshina, M. N. Kuznetsova, et al., “Biological mechanisms of predisposition for alcohol abuse and brain dysfunction in the offspring of rats with chronic alcohol intoxication,” Vopr. Narkol., 4, 43–50 (1994).

    Google Scholar 

  24. K. K. Sulik, “Genesis of alcohol-induced craniofacial dysmorphism,” Exp. Biol. Med., 230, No. 6, 366–375 (2005), https://doi.org/10.1177/15353702-0323006-04.

    Article  CAS  Google Scholar 

  25. E. L. Abel and B. A. Dintcheff, “Effects of prenatal alcohol exposure on growth and development in rats,” J. Pharmacol. Exp. Ther., 207, No. 3, 916–921 (1978).

    CAS  PubMed  Google Scholar 

  26. X. Zhang, J. H. Sliwowska, and J. Weinberg, “Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function,” Exp. Biol. Med., 230, No. 6, 376–388 (2005), https://doi.org/10.1177/15353702-0323006-05.

    Article  CAS  Google Scholar 

  27. S. J. Kelly, N. Day, and A. P. Streissguth, “Effects of prenatal alcohol exposure on social behavior in humans and other species,” Neurotoxicol. Teratol., 22, 143–149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. E. Maier and J. R. West, “Drinking patterns and alcohol-related birth defects,” Alcohol Res. Health, 25, No. 3, 168–174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Ieraci and D. G. Herrera, “Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis,” Neurobiol. Dis., 26, No. 3, 597–605 (2007), https://doi.org/10.1016/j.nbd.2007.02.011.

    Article  CAS  PubMed  Google Scholar 

  30. S. E. Parnell, S. K. O’Leary-Moore, E. A. Godin, et al., “Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8,” Alcohol Clin. Exp. Res., 33, No. 6, 1001–1110 (2009), https://doi.org/10.1111/j.1530-0277.2009.00921.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. T. Wigal and A. Amsel, “Behavioral and neuroanatomical effects of prenatal, postnatal, or combined exposure to ethanol in weanling rats,” Behav. Neurosci., 104, No. 1, 116–126 (1990), https://doi.org/10.1037//0735-7044.104.1.116.

    Article  CAS  PubMed  Google Scholar 

  32. M. Erecinska, S. Cherian, and I. A. Silver, “Energy metabolism in mammalian brain during development,” Prog. Neurobiol., 73, No. 6, 397–445 (2004), https://doi.org/10.1016/j.pneurobio.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  33. S. A. Bayer, J. Altman, R. J. Russo, et al., “Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat,” Neurotoxicology, 14, 83–144 (1993).

    CAS  PubMed  Google Scholar 

  34. T. D. Tran, K. Cronise, M. D. Marino, et al., “Critical periods for the effects of alcohol exposure on brain weight, body weight, activity, and investigation,” Behav. Brain Res., 116, 99–110 (2000), https://doi.org/10.1029/2005ja011204.

  35. N. C. Raiha, M. Koskinen, and P. Pikkarainen, “Developmental changes in alcohol-dehydrogenase activity in rat and guinea-pig liver,” Biochem. J., 103, No. 3, 623–626 (1967), https://doi.org/10.1042/bj1030623.

  36. A. R. Patten, C. J. Fontaine, and B. R. A. Christie, “Comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors,” Front. Pediatr., 2, 93 (2014), https://doi.org/10.3389/fped.2014.00093.

  37. A. M. Allan, J. Chynoweth, L. A. Tyler, and K. K. Caldwell, “A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm,” Alcohol. Clin. Exp. Res., 27, No. 12, 2009–2016 (2003), https://doi.org/10.1097/01.alc.0000100940.95053.72.

  38. C. R. Green, S. M. Kobus, Y. Ji, et al., “Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal guinea pig,” Neurotoxicol. Teratol., 27, No. 6, 871–881 (2005), https://doi.org/10.1016/j.ntt.2005.07.006.

  39. S. J. Kelly and C. R. Lawrence, “Intragastric intubation of alcohol during the perinatal period,” Methods Mol. Biol., 447, 101–110 (2008), https://doi.org/10.1007/978-1-59745-242-78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. D. Driscoll, A. P. Streissguth, and E. P. Riley, “Prenatal alcohol exposure: comparability of effects in humans and animal models,” Neurotoxicol. Teratol., 12, No. 3, 231–237 (1990), https://doi.org/10.1016/0892-0362(90)90094-s.

    Article  CAS  PubMed  Google Scholar 

  41. Y. Izumi, R. Kitabayashi, M. Funatsu, et al., “A single day of ethanol exposure during development has persistent effects on bi-directional plasticity, N-methyl-D-aspartate receptor function and ethanol sensitivity,” Neuroscience, 136, No. 1, 269–279 (2005), https://doi.org/10.1016/j.neuroscience.2005.07.015.

    Article  CAS  PubMed  Google Scholar 

  42. J. Karanian, J. Yergey, R. Lister, et al., “Characterization of an automated apparatus for precise control of inhalation chamber ethanol vapor and blood ethanol concentrations,” Alcohol Clin. Exp. Res., 10, No. 4, 443–447 (1986), https://doi.org/10.1111/j.1530-0277.1986.tb05121.x.

    Article  CAS  PubMed  Google Scholar 

  43. S. J. Kelly, N. Day, and A. P. Streissguth, “Effects of prenatal alcohol exposure on social behavior in humans and other species,” Neurotoxicol. Teratol., 22, 143–149 (2000), https://doi.org/10.1016/s0892-0362(99)00073-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E. Domellof, J. Fagard, A. Y. Jacquet, and L. Ronnqvist, “Goaldirected arm movements in children with fetal alcohol syndrome: a kinematic approach,” Eur. J. Neurol., 18, No. 2, 312–320 (2011), https://doi.org/10.1111/j.1468-1331.2010.03142.x.

    Article  CAS  PubMed  Google Scholar 

  45. T. M. Roebuck, R. W. Simmons, S. N. Mattson, and E. P. Riley, “Prenatal exposure to alcohol affects the ability to maintain postural balance,” Alcohol Clin. Exp. Res., 22, No. 1, 252–258 (1998), https://doi.org/10.1111/j.1530-0277.1998.tb03646.x.

    Article  CAS  PubMed  Google Scholar 

  46. A. Paolozza, R. Titman, D. Brien, et al., “Altered accuracy of saccadic eye movements in children with fetal alcohol spectrum disorder,” Alcohol Clin. Exp. Res., 37, No. 9, 1491–1498 (2013), https://doi.org/10.1111/acer.12119.

    Article  PubMed  Google Scholar 

  47. N. W. Bond and E. L. Digiusto, “Effects of prenatal alcohol consumption on shock avoidance learning in rats,” Psychol. Rep., 41, No. 3, Part 2, 1269–1270 (1977), https://doi.org/10.2466/pr0.1977.41.3f.1269.

  48. A. M. Cebolla, G. Cheron, R. Hourez, et al., “Effects of maternal alcohol consumption during breastfeeding on motor and cerebellar Purkinje cells behavior in mice,” Neurosci. Lett., 455, No. 1, 4–7 (2009), https://doi.org/10.1016/j.neulet.2009.03.034.

    Article  CAS  PubMed  Google Scholar 

  49. I. Dursun, E. Jakubowska-Dogru, and T. Uzbay, “Effects of prenatal exposure to alcohol on activity, anxiety, motor coordination, and memory in young adult Wistar rats,” Pharmacol. Biochem. Behav., 85, No. 2, 345–355 (2006), https://doi.org/10.1016/j.pbb.2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  50. J. H. Hannigan and E. P. Riley, “Prenatal ethanol alters gait in rats,” Alcohol, 5, No. 6, 451–454 (1988), https://doi.org/10.1016/0741-8329(88)90081-x.

    Article  CAS  PubMed  Google Scholar 

  51. S. E. Maier, J. A. Miller, J. M. Blackwell, and J. R. West, “Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge-like alcohol exposure during brain development,” Alcohol Clin. Exp. Res., 23, No. 4, 726–734 (1999), https://doi.org/10.1111/j.1530-0277.1999.tb04176.x.

    CAS  PubMed  Google Scholar 

  52. E. Lewandowska, T. Stepien, T. Wierzba-Bobrowicz, et al., “Alcohol-induced changes in the developing cerebellum. Ultrastructural and quantitative analysis of neurons in the cerebellar cortex,” Folia Neuropathol., 50, No. 4, 397–406 (2012), https://doi.org/10.5114/fn.2012.32374.

  53. C. Famy, A. P. Streissguth, and A. S. Unis, “Mental illness in adults with fetal alcohol syndrome or fetal alcohol effects,” Am. J. Psychiatry, 155, 552–554 (1998), https://doi.org/10.1176/ajp.155.4.552.

  54. H. M. Barr, F. L. Bookstein, K. D. O’Malley, et al., “Binge drinking during pregnancy as a predictor of psychiatric disorders on the Structured Clinical Interview for DSM-IV in young adult offspring,” Am. J. Psychiatry, 163, 1061–1065 (2006), https://doi.org/10.1176/ajp.2006.163.6.1061.

    Article  PubMed  Google Scholar 

  55. D. S. Ramsay, M. I. Bendersky, and M. Lewis, “Effect of prenatal alcohol and cigarette exposure on two- and six-month-old infants’ adrenocortical reactivity to stress,” J. Pediatr. Psychol., 21, 833–840 (1996), https://doi.org/10.1093/jpepsy/21.6.833.

    Article  CAS  PubMed  Google Scholar 

  56. S. W. Jacobson, J. T. Bihun, and L. M. Chiodo, “Effects of prenatal alcohol and cocaine exposure on infant cortisol levels,” Develop. Psychopathol., 11, 195–208 (1999), https://doi.org/10.1017/s0954579499002011.

    Article  CAS  Google Scholar 

  57. D. W. Haley, N. S. Handmaker, and J. Lowe, “Infant stress reactivity and prenatal alcohol exposure,” Alcohol Clin. Exp. Res., 30, 2055–2064 (2006), https://doi.org/10.1111/j.1530-0277.2006.00251.x.

    Article  PubMed  Google Scholar 

  58. A. K. Beery and D. Kaufer, “Stress, social behavior, and resilience: Insights from rodents,” Neurobiol. Stress, 1, 116–127 (2015), https://doi.org/10.1016/j.ynstr.2014.10.004.

    Article  PubMed  Google Scholar 

  59. J. G. de Jong, B. J. van der Vegt, B. Buwalda, et al., “Social environment determines the long-term effects of social defeat,” Physiol. Behav., 84, 87–95 (2005), https://doi.org/10.1016/j.physbeh.2004.10.013.

    Article  PubMed  CAS  Google Scholar 

  60. T. V. Proskuryakova, V. A. Shokhonova, E. V. Ul’yanova, and I. P. Anokhina, “Effects of alcohol consumption by female rats during pregnancy on the behavior and corticosterone level in their adult offspring,” Vopr. Narkol., 5, 58–68 (2014).

    Google Scholar 

  61. S. Lee and C. Rivier, “Gender differences in the effect of prenatal alcohol exposure on the hypothalamic-pituitary-adrenal axis response to immune signals,” Psychoneuroendocrinology, 21, 145–155 (1996), https://doi.org/10.1016/0306-4530(95)00038-0.

    Article  CAS  PubMed  Google Scholar 

  62. S. Lee, D. Schmidt, F. Tilders, et al., “Increased activity of the hypothalamic pituitary-adrenal axis of rats exposed to alcohol in utero: role of altered pituitary and hypothalamic function,” Mol. Cell. Neurosci., 16, 515–528 (2000), https://doi.org/10.1006/mcne.2000.0890.

    Article  CAS  PubMed  Google Scholar 

  63. J. Weinberg, “Hyperresponsiveness to stress: differential effects of prenatal ethanol on males and females,” Alcohol Clin. Exp. Res., 12, 647–652 (1988), https://doi.org/10.1111/j.1530-0277.1988.tb00258.x.

    Article  CAS  PubMed  Google Scholar 

  64. J. Weinberg, “Prenatal ethanol effects: sex differences in offspring stress responsiveness,” Alcohol, 9, 219-223 (1992), https://doi.org/10.1016/0741-8329(92)90057-h.

    Article  CAS  PubMed  Google Scholar 

  65. C. K. Kim, P. K. Giberson, W. Yu, et al., “Effects of prenatal ethanol exposure on hypothalamic-pituitary-adrenal responses to chronic cold stress in rats,” Alcohol Clin. Exp. Res., 23, 301–310 (1999), https://doi.org/10.1111/j.1530-0277.1999.tb04114.x.

    Article  CAS  PubMed  Google Scholar 

  66. I. Halasz, F. Aird, L. Li, et al., “Sexually dimorphic effects of alcoholexposure in utero on neuroendocrine and immune functions in chronic alcohol-exposed adult rats,” Mol. Cell. Neurosci., 4, 343–353 (1993), https://doi.org/10.1006/mcne.1993.1044.

    Article  CAS  PubMed  Google Scholar 

  67. P. F. Brain, J. S. Ajarem, and V. V. Petkov, “The utility of ethological assessments of murine agonistic interactions in behavioural teratology: the fetal alcohol syndrome,” Top. Neurosci., 110–121 (1987), https://doi.org/10.1007/978-94-009-3359-0_7.

  68. J. N. Lugo, M. D. Marino, J. T. Gass, et al., “Ethanol exposure during development reduces resident aggression and testosterone in rats,” Physiol. Behav., 87, 330–337 (2006), https://doi.org/10.1016/j.physbeh.2005.10.005.

    Article  CAS  PubMed  Google Scholar 

  69. S. J. Kelly and T. D. Tran, “Alcohol exposure during development alters social recognition and social communication in rats,” Neurotoxicol. Teratol., 19, 383–389 (1997), https://doi.org/10.1016/s0892-0362(97)00064-0.

    Article  CAS  PubMed  Google Scholar 

  70. K. R. Ridderinkhof, M. Ullsperger, E. A. Crone, and S. Nieuwenhuis, “The role of the medial frontal cortex in cognitive control,” Science, 306, No. 5695, 443–447 (2004), https://doi.org/10.1126/science.1100301.

  71. J. Alvarez and E. Emory, “Executive function and the frontal lobes: a meta-analytic review,” Neuropsychol. Rev., 16, No. 1, 17–42 (2006), https://doi.org/10.1007/s11065-006-9002-x.

    Article  PubMed  Google Scholar 

  72. C. Rasmussen, “Executive functioning and working memory in fetal alcohol spectrum disorder,” Alcohol. Clin. Exp. Res., 29, No. 8, 1359–1367 (2005), https://doi.org/10.1097/01.alc.0000175040.91007.d0.

    Article  PubMed  Google Scholar 

  73. P. D. Connor, P. D. Sampson, F. L. Bookstein, et al., “Direct and indirect effects of prenatal alcohol damage on executive function,” Dev. Neuropsychol., 18, No. 3, 331–354 (2000), https://doi.org/10.1207/s1532694204connor.

    Article  CAS  PubMed  Google Scholar 

  74. A. S. Aragon, W. O. Kalberg, D. Buckley, et al., “Neuropsychological study of FASD in a sample of American Indian children: processing simple versus complex information,” Alcohol Clin. Exp. Res., 32, No. 12, 2136–2148 (2008), https://doi.org/10.1111/j.1530-0277.2008.00802.x.

    Article  PubMed  PubMed Central  Google Scholar 

  75. L. Vaurio, E. P. Riley, and S. N. Mattson, “Differences in executive functioning in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder,” J. Int. Neuropsychol. Sol., 14, No. 1, 119–129 (2008), https://doi.org/10.1017/s1355617708080144.

    Article  Google Scholar 

  76. E. P. Riley, E. A. Lochry, and N. R. Shapiro, “Lack of response inhibition in rats prenatally exposed to alcohol,” Psychopharmacology, 62, No. 1, 47–52 (1979), https://doi.org/10.1007/bf00426034.

    Article  CAS  PubMed  Google Scholar 

  77. E. L. Abel, “In utero alcohol exposure and developmental delay of response inhibition,” Alcohol Clin. Exp. Res., 6, No. 3, 369–376 (1982), https://doi.org/10.1111/j.1530-0277.1982.tb04993.x.

    Article  CAS  PubMed  Google Scholar 

  78. S. M. Mihalick, J. E. Crandall, J. C. Langlois, et al., “Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats,” Neurotoxicol. Teratol., 23, No. 5, 453–462 (2001), https://doi.org/10.1016/s0892-0362(01)00168-4.

    Article  CAS  PubMed  Google Scholar 

  79. T. A. Girard, H. C. Xing, G. R. Ward, and P. E. Wainwright, “Early postnatal ethanol exposure has long-term effects on the performance of male rats in a delayed matching-to-place task in the Morris water maze,” Alcohol Clin. Exp. Res., 24, No. 3, 300–306 (2000), https://doi.org/10.1111/j.1530-0277.2000.tb04611.x.

    Article  CAS  PubMed  Google Scholar 

  80. A. Uecker and L. Nadel, “Spatial locations gone awry: object and spatial memory deficits in children with fetal alcohol syndrome,” Neuropsychologia, 34, No. 3, 209–223 (1996), https://doi.org/10.1016/0028-3932(95)00096-8.

    Article  CAS  PubMed  Google Scholar 

  81. J. Gil-Mohapel, F. Boehme, L. Kainer, and B. R. Christie, “Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models,” Brain Res. Rev., 64, No. 2, 283–303 (2010), https://doi.org/10.1016/j.brainresrev.2010.04.011.

    Article  CAS  PubMed  Google Scholar 

  82. A. F. Wagner and P. S. Hunt, “Impaired trace fear conditioning following neonatal ethanol: reversal by choline,” Behav. Neurosci, 120, No. 2, 482–487 (2006), https://doi.org/10.1037/0735-7044.120.2.482.

    Article  CAS  PubMed  Google Scholar 

  83. P. S. Hunt, S. E. Jacobson, and E. J. Torok, “Deficits in trace fear conditioning in a rat model of fetal alcohol exposure: dose-response and timing effects,” Alcohol, 43, No. 6, 465–474 (2009), https://doi.org/10.1016/j.alcohol.2009.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. J. J. Quinn, S. S. Oommen, G. E. Morrison, and M. S. Fanselow, “Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner,” Hippocampus, 12, No. 4, 495–504 (2002), https://doi.org/10.1002/hipo.10029.

    Article  PubMed  Google Scholar 

  85. B. A. Blanchard, E. P. Riley, and J. H. Hannigan, “Deficits on a spatial navigation task following prenatal exposure to ethanol,” Neurotoxicol. Teratol., 9, No. 3, 253–258 (1987), https://doi.org/10.1016/0892-0362(87)90010-9.

    Article  CAS  PubMed  Google Scholar 

  86. C. Gianoulakis, “Rats exposed prenatally to alcohol exhibit impairment in spatial navigation test,” Behav. Brain Res., 36, No. 3, 217–228 (1990), https://doi.org/10.1016/0166-4328(90)90060-r.

    Article  CAS  PubMed  Google Scholar 

  87. B. R. Christie, S. E. Swann, C. J. Fox, et al., “Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats,” Eur. J. Neurosci., 21, No. 6, 1719–1726 (2005), https://doi.org/10.1111/j.1460-9568.2005.04004.x.

    Article  PubMed  Google Scholar 

  88. K. Marquardt and J. L. Brigman, “The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models,” Alcohol, 51, 1–15 (2016), https://doi.org/10.1016/j.alcohol.2015.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. M. Popovic, M. Caballero-Bleda, and C. Guerri, “Adult rat’s offspring of alcoholic mothers are impaired on spatial learning and object recognition in the Can test,” Behav. Brain Res., 174, No. 1, 101–111 (2006), https://doi.org/10.1016/j.bbr.2006.07.012.

    Article  CAS  PubMed  Google Scholar 

  90. K. Cronise, M. D. Marino, T. D. Tran, and S. J. Kelly, “Critical periods for the effects of alcohol exposure on learning in rats,” Behav. Neurosci, 115, 138–145 (2001), https://doi.org/10.1037/0735-7044.115.1.138.

    Article  CAS  PubMed  Google Scholar 

  91. M. J. Meaney, “Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations,” Ann. Rev. Neurosci., 24, 1161–1192 (2001), https://doi.org/10.1146/annurev.neuro.24.1.1161.

    Article  CAS  PubMed  Google Scholar 

  92. F. A. Champagne and M. J. Meaney, “Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty,” Behav. Neurosci., 121, 1353–1363 (2007), https://doi.org/10.1037/0735-7044.121.6.1353.

    Article  PubMed  Google Scholar 

  93. D. Siegel, “Toward an interpersonal neurobiology of the developing mind: attachment relationships, ‘mindsight,’ and neural integration,” Infant Ment. Health J., 22, 67–94 (2001), https://doi.org/10.1002/1097-0355(200101/04)22.

    Article  Google Scholar 

  94. J. A. Coan, “Toward a neuroscience of attachment,” in: Handbook of Attachment: Theory, Research, and Clinical Applications, J. Cassidy (ed.); Child and Family Social Work, 14, 241–265 (2008), https://doi.org/10.1111/j.1365-2206.2009.00653.x.

  95. P. R. Dominguez, “The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: an update,” Brain Res. Bull., 84, No. 2, 118–124 (2011), https://doi.org/10.1016/j.brainresbull.2010.12.010.

    Article  PubMed  Google Scholar 

  96. D. Benoit, “Infant-parent attachment: Definition, types, antecedents, measurement and outcome,” Paediatr. Child Health, 9, No. 8, 541–545 (2004), https://doi.org/10.1093/pch/9.8.541.

    Article  PubMed  PubMed Central  Google Scholar 

  97. M. J. O’Connor, M. Sigman, and C. Kasari, “Attachment behavior of infants exposed to alcohol prenatally: mediating effects of infant affect and mother infant interaction,” Develop. Psychopathol., 4, 243–256 (1992), https://doi.org/10.1017/s0954579400000122.

    Article  Google Scholar 

  98. M. J. O’Connor, N. Kogan, and R. Findlay, “Prenatal alcohol exposure and attachment behavior in children,” Alcohol Clin. Exp. Res., 26, 1592–1602 (2002), https://doi.org/10.1111/j.1530-0277.2002.tb02460.x.

    Article  PubMed  Google Scholar 

  99. J. S. Chen, C. D. Driscoll, and E. P. Riley, “Ontogeny of suckling behavior in rats prenatally exposed to alcohol,” Teratology, 26, 145–153 (1982), https://doi.org/10.1002/tera.1420260206.

    Article  CAS  PubMed  Google Scholar 

  100. G. A. Rockwood and E. P. Riley, “Nipple attachment behavior in rat pups exposed to alcohol in utero,” Neurotoxicol. Teratol., 12, 383–389 (1990), https://doi.org/10.1016/0892-0362(90)90058-k.

    Article  CAS  PubMed  Google Scholar 

  101. S. Barron, S. J. Kelly, and E. P. Riley, “Neonatal alcohol exposure alters suckling behavior in neonatal rat pups,” Pharmacol. Biochem. Behav., 39, 423–427 (1991), https://doi.org/10.1016/0091-3057(91)90202-d.

    Article  CAS  PubMed  Google Scholar 

  102. G. Ehret, “Infant rodent ultrasounds – a gate to the understanding of sound communication,” Behav. Genet., 35, No. 1, 19–29 (2005), https://doi.org/10.1007/s10519-004-0853-8.

    Article  PubMed  Google Scholar 

  103. M. D. Marino, K. Cronise, J. N. Lugo, and S. J. Kelly, “Ultrasonic vocalizations and maternal-infant interactions in a rat model of fetal alcohol syndrome,” Dev. Psychobiol., 41, 341–351 (2002), https://doi.org/10.1002/dev.10077.

    Article  PubMed  Google Scholar 

  104. M. Subramanian, “Lactation and prolactin release in foster dams suckling prenatally ethanol exposed pups,” Alcohol Clin. Exp. Res., 16, 891–894 (1992), https://doi.org/10.1111/j.1530-0277.1992.tb01888.x.

    Article  CAS  PubMed  Google Scholar 

  105. J. H. Hannigan, S. K. O’Leary-Moore, and R. F. Berman, “Postnatal environmental or experiential amelioration of neurobehavioral effectsof perinatal alcohol exposure in rats,” Neurosci. Biobehav. Rev., 31, 202–211 (2007), https://doi.org/10.1016/j.neubiorev.2006.06.019.

    Article  CAS  PubMed  Google Scholar 

  106. J. H. Hannigan, R. F. Berman, and C. S. Zajac, “Environmental enrichment and the behavioral effects of prenatal exposure to alcohol in rats,” Neurotoxicol. Teratol., 15, 261–266 (1993), https://doi.org/10.1016/0892-0362(93)90007-b.

    Article  CAS  PubMed  Google Scholar 

  107. R. F. Berman and J. H. Hannigan, “Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy,” Hippocampus, 10, 94–110 (2000), https://doi.org/10.1002/(sici)1098-1063(2000)10:1<94::aidhipo11>3.0.co;2-t.

  108. R. F. Berman, J. H. Hannigan, M. A. Sperry, et al., “Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density,” Alcohol, 13, 209–216 (1996), https://doi.org/10.1016/0741-8329(95)02049-788.

    Article  CAS  PubMed  Google Scholar 

  109. R. Tipyasang, S. Kunwittaya, S. Mukda, et al., “Enriched environment attenuates changes in water-maze performance and BDNF level caused by prenatal alcohol exposure,” EXCLI J., 13, 536–547 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. M. B. Heaton, J. J. Mitchell, M. Paiva, and D. W. Walker, “Ethanolinduced alterations in the expression of neurotrophic factors in the developing rat central nervous system,” Brain Res. Dev. Brain Res., 121, No. 1, 97–107 (2000), https://doi.org/10.1002/1097-4695(20001105)45:2.

    Article  CAS  PubMed  Google Scholar 

  111. Paley B. and M. J. O’Connor, “Behavioral interventions for children and adolescents with fetal alcohol spectrum disorders,” Alcohol Res. Health, 34, No. 1, 64–75 (2011).

    PubMed  PubMed Central  Google Scholar 

  112. A. Y. Klintsova, R. M. Cowell, R. A. Swain, et al., “Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. I. Behavioral results,” Brain Res., 800, 48–61 (1998), https://doi.org/10.1016/s0006-8993(98)00495-8.

    Article  CAS  PubMed  Google Scholar 

  113. A. Y. Klintsova, C. Scamra, M. Hoffman, et al., “Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. II. A quantitative stereological study of synaptic plasticity in female rat cerebellum,” Brain Res., 937, 83–93 (2002), https://doi.org/10.1016/s0006-8993(02)02492-7.

  114. J. D. Thomas, T. M. Sather, and L. A. Whinery, “Voluntary exercise infl uences behavioural development in rats exposed to alcohol during the neonatal brain growth spurt,” Behav. Neurosci, 122, 1264–1273 (2008), https://doi.org/10.1037/a0013271.

    Article  PubMed  PubMed Central  Google Scholar 

  115. V. A. Redila, A. K. Olson, S. E. Swann, et al., “Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise,” Hippocampus, 16, 305–311 (2006), https://doi.org/10.1002/hipo.20164.

    Article  CAS  PubMed  Google Scholar 

  116. J. L. Leasure and L. Decker, “Social isolation prevents exercise-induced proliferation of hippocampal progenitor cells in female rats,” Hippocampus, 19, 907–912 (2009), https://doi.org/10.1002/hipo.20563.

    Article  PubMed  Google Scholar 

  117. B. Leuner, E. Gould, and T. J. Shors, “Is there a link between adult neurogenesis and learning?” Hippocampus, 16, No. 3, 216–224 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Proskuryakova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 118, No. 1, Iss. II, Addictive Disorder, pp. 79–88, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumkina, E.V., Anokhin, P.K., Proskuryakova, T.V. et al. Experimental Approaches to the Study of Behavioral Impairments Associated with Prenatal Exposure to Alcohol. Neurosci Behav Physi 49, 894–902 (2019). https://doi.org/10.1007/s11055-019-00816-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00816-x

Keywords

Navigation