Skip to main content
Log in

Modeling of Post-Traumatic Stress Disorder in Mice: Nonlinear Relationship with the Strength of the Traumatic Event

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The neurophysiological mechanisms of the development of post-traumatic stress disorder (PTSD) in humans remain poorly understood and require experimental investigation in animal models. We report here studies of variation in the range of conditions for the acquisition of PTSD in a learned fear model in mice using electrocutaneous shocks (ECS) as the stressful event. Use of different ECS application parameters showed that the severity of fear-induced and behavioral sensitization has a nonlinear relationship with the intensity of the traumatizing event. The optimum parameters for acquisition of PTSD are three shocks each of current 1.5 mA and duration 10 sec. The critical parameter is the number of ECS applied. Increases in the strength or duration of the traumatizing event did not lead to more severe signs of PTSD. As the number of ECS increased further, the behavior of the mice stopped being homogeneous: some of the animals demonstrated marked PTSD-like behavior, while others showed no signs of PTSD at all. These results identify the effective conditions for acquisition of PTSD in a learned fear model in mice and the conditions for the occurrence of individual variability in the traumatizing event, points important for understanding the mechanisms forming PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamec, R. E. and Shallow, T., “Lasting effects on rodent anxiety of a single exposure to a cat,” Physiol. Behav., 54, 101–109 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Adamec, R., Strasser, K., Blundell, J., et al., “Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress,” Behav. Brain Res., 167, 270–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Berardi, A., Trezza, V., Palmery, M., et al., “An updated animal model capturing both the cognitive and emotional features of post-traumatic stress disorder (PTSD),” Front. Behav. Neurosci., 8, 142–154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghans, B. and Homberg, J. R., “Animal models for posttraumatic stress disorder: an overview of what is used in research,” World, J. Psychiatry, 5, No. 4, 387–396 (2015).

    Article  Google Scholar 

  • Breslau, N., Kessler, R. C., Chilcoat, H. D., et al., “Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma,” Arch. Gen. Psychiatry, 55, 626–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Careaga, M. B. L., Girardi, C. E. N., and Suchecki, D., “Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation,” Neurosci. Biobehav. Rev., 71, 48–57 (2016).

    Article  PubMed  Google Scholar 

  • Carola, V., D’Olimpio, F., Brunamonti, E., et al., “Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice,” Behav. Brain Res., 134, 49–57 (2002).

    Article  PubMed  Google Scholar 

  • Choleris, E., Thomas, A. W., Kavaliers, M., and Prato, F. S., “A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field,” Neurosci. Biobehav. Rev., 25, 235–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, H. and Zohar, J., “An animal model of posttraumatic stress disorder: the use of cut-off behavioral criteria,” Ann. N. Y. Acad. Sci., 1032, 167–178 (2004).

    Article  PubMed  Google Scholar 

  • Cohen, H., Kozlovsky, N., Alona, C., et al., “Animal model for PTSD: from clinical concept to translational research,” Neuropharmacology, 62, 715–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, H., Zohar, J., Matar, M. A., et al., “Setting apart the affected: the use of behavioral criteria in animal models of post-traumatic stress disorder,” Neuropsychopharmacology, 29, 1962–1970 (2004).

    Article  PubMed  Google Scholar 

  • Dahlhoff, M., Siegmund, A., Golub, Y., et al., “AKT/GSK-3beta/beta-catenin signalling within hippocampus and amygdala refl ects genetically determined differences in posttraumatic stress disorder like symptoms,” Neuroscience, 169, 1216–1226 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dvorkin, A., Szechtman, H., and Golani, I., “Knots: attractive places with high path tortuosity in mouse open field exploration,” PLoS Comput. Biol., 6, e1000638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golub, Y., Kaltwasser, S. F., Mauch, C. P., et al., “Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder,” J. Psychiatr. Res., 45, 650–659 (2011).

    Article  PubMed  Google Scholar 

  • Golub, Y., Mauch, C. P., Dahlhoff, M., and Wotjak, C. T., “Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD),” Behav. Brain Res., 205, 544–549 (2009).

    Article  PubMed  Google Scholar 

  • Jovanovic, T. and Ressler, K. J., “How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD,” Am. J. Psychiatry, 167, 648–662 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamprath, K. and Wotjak, C. T., “Nonassociative learning processes determine expression and extinction of conditioned fear in mice,” Learn. Mem., 11, 770–786 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung, J.-C., Chen, T.-C., Shyu, B.-C., et al., “Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder,” J. Biomed. Sci., 17, 29 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, H., Clark, B. J., and Whishaw, I. Q., “Similar development of cued and learned home bases in control and hippocampal-damaged rats in an open field exploratory task,” Hippocampus, 17, 370–380 (2007).

    Article  PubMed  Google Scholar 

  • Li, S., Murakami, Y., Wang, M., et al., “The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder,” Pharmacol. Biochem. Behav., 85, 324–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Liberzon, I. and Abelson, J. L., “Context processing and the neurobiology of post-traumatic stress disorder,” Neuron, 92, No. 1, 14–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberzon, I., Khan, S., and Young, E., “Animal models of posttraumatic stress disorder,” in: Handbook of Stress and the Brain, T. Steckler et al. (eds.), Elsevier, Amsterdam (2005), pp. 231–250.

    Google Scholar 

  • Lipkind, D., Sakov, A., Kafkafi , N., et al., “New replicable anxiety-related measures of wall vs. center behavior of mice in the open field,” J. Appl. Physiol., 97, 347–359 (2004).

    Article  PubMed  Google Scholar 

  • Lister, R. G., “The use of a plus-maze to measure anxiety in the mouse,” Psychopharmacology (Berlin), 92, 180–185 (1987).

    CAS  Google Scholar 

  • Mahan, A. L. and Ressler, K. J., “Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder,” Trends Neurosci., 35, 24–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Murison, R. and Overmier, J. B., “Comparison of different animal models of stress reveals a non-monotonic effect,” Stress, 2, 227–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Prut, L. and Belzung, C., “The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review,” Eur. J. Pharmacol., 463, 3–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Risbrough, V. B. and Stein, M. B., “Neuropharmacology special issue on posttraumatic stress disorder (PTSD), current state of the art in clinical and preclinical PTSD research,” Neuropharmacology, 62, 539–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Rybnikova, E. A., Mironova, V. I., Tyul’kova, E. I., and Samoilov, M. O., “The anxiolytic effect of mild hypobaric hypoxia in a model of posttraumatic stress disorder in rats,” Zh. Vyssh. Nerv. Deyat., 58, No. 4, 486–492 (2008).

    CAS  Google Scholar 

  • Rybnikova, E. A., Vorob’ev, M. G., and Samoilov, M. O., “Hypoxic postconditioning corrects impairments in the behavior of rats in a model of post-traumatic stress disorder,” Zh. Vyssh. Nerv. Deyat., 62, No. 3, 364 (2012).

    CAS  Google Scholar 

  • Sheynin, J. and Liberzon, I., “Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder,” Neurosci. Lett., 649, 133–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear,” J. Psychiatr. Res., 41, 848–860 (2007a).

    Article  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “Hyperarousal does not depend on trauma-related contextual memory in an animal model of posttraumatic stress disorder,” Physiol. Behav., 90, 103–107 (2007b).

    Article  CAS  PubMed  Google Scholar 

  • Siegmund, A. and Wotjak, C. T., “Toward an animal model of posttraumatic stress disorder,” Ann. N. Y. Acad. Sci., 1071, 324–334 (2006).

    Article  PubMed  Google Scholar 

  • Smith, N. B., Doran, J. M., Sippel, L. M., and Harpaz-Rotem, I., “Fear extinction and memory reconsolidation as critical components in behavioral treatment for posttraumatic stress disorder and potential augmentation of these processes,” Neurosci. Lett., 649, 170–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Stam, R., “PTSD and stress sensitisation: a tale of brain and body. Part 2: animal models,” Neurosci. Biobehav. Rev., 31, 558–584 (2007).

    Article  PubMed  Google Scholar 

  • Thoeringer, C. K., Henes, K., Eder, M., et al., “Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus,” Neuropsychopharmacology, 37, 787–796 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Walf, A. A. and Frye, C. A., “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., 2, 322–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Anokhin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 3, pp. 378–394, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, K.A., Anokhin, K.V. Modeling of Post-Traumatic Stress Disorder in Mice: Nonlinear Relationship with the Strength of the Traumatic Event. Neurosci Behav Physi 49, 875–886 (2019). https://doi.org/10.1007/s11055-019-00814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00814-z

Keywords

Navigation