Skip to main content

Advertisement

Log in

Can Consciousness in Animals Be Assessed on the Basis of Their Behavior?

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The idea that animals have consciousness arose from studies of their behavior. However, behavioral studies are insufficient for assessing the existence of consciousness in animals. Following Gutfreund [2017], I am of the opinion that the answer to the question of consciousness in animals requires an understanding of the neural mechanisms of consciousness. The question here is that of whether it is possible to understand these mechanisms. There is a wide range of views on this question – from cartesian dualism, which denies the existence of any kind of neural mechanism for consciousness, to the diametrically opposite view, that consciousness is a cognitive function which can therefore theoretically be understood. I adhere to this latter point of view. However, as argued in this article, progress in studies of the mechanisms of cognitive functions, including consciousness, requires a paradigm shift in neurobiology from a purely connectionist approach towards cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arshavsky, Y. I., “Neurons versus networks: The interplay between individual neurons and neural networks in cognitive functions,” Neuroscientist, 23, No. 4, 341–355 (2017).

    Article  PubMed  Google Scholar 

  • Arshavsky, Y. I., “Two functions of early language experience,” Brain Res. Rev., 60, No. 2, 327–340 (2009).

    Article  PubMed  Google Scholar 

  • Arshavsky, Y. I., “I. M. Gel’fand on mathematics and neurophysiology,” Vestn. Ros. Akad. Med. Nauk., 80, No. 10, 937–941 (2010).

  • Arshavsky, Y. I., “The role of neural networks and individual neurons in brain functioning,” Sens. Sistemy, 25, No. 1, 3–16 (2011).

    Google Scholar 

  • Barron, A. B. and Klein, C., “What insects can tell us about the origins of consciousness,” Proc. Natl. Acad. Sci. USA, 113, No. 18, 4900–4908 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L., and Rauschecker, J. P., “Neurobiological roots of language in primate audition: common computational properties,” Trends Cogn. Sci., 19, No. 2, 142–150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler, A. B. and Cotterill, R. M., “Mammalian and avian neuroanatomy and the question of consciousness in birds,” Biol. Bull., 211, No. 2, 106–127 (2006).

    Article  PubMed  Google Scholar 

  • Butler, A. B., “Hallmarks of consciousness,” Adv. Exp. Med. Biol., 739, 291–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Chacon-Camacho, O. F., Villegas-Ruiz, V., Buentello-Volante, B., et al., “Acro-spondylo-pubic dysostosis associated with cataracts, microcephaly, and normal intelligence,” Am. J. Med. Genet., 167A, No. 2, 282–286 (2015).

    Article  PubMed  Google Scholar 

  • Chailakhyan, L. M., Origins of the Psyche, or Consciousness, Pushchino (1992).

  • Dawkins, М., “Animal welfare and the paradox of animal consciousness,” Adv. Study Behav., 47, 5–38 (2015).

    Article  Google Scholar 

  • Deco, G. and Kringelbach, M. L., “Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders,” Neuron, 84, No. 5, 892–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Dicke, U. and Roth, G., “Neuronal factors determining high intelligence,” Philos. Trans. R. Soc. Lond. B, 371, No. 1685, 20150180 (2016).

  • Dorsaint-Pierre, R., Penhune, V. B., Watkins, K. E., et al., “Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization,” Brain, 129, No. 5, 1164–1176 (2006).

    Article  PubMed  Google Scholar 

  • Ersland, K. M., Christoforou, A., Stansberg, C., et al., “Gene-based analysis of regionally enriched cortical genes in GWAS data sets of cognitive traits and psychiatric disorders,” PLoS One, 7, No. 2, e31687 (2012).

  • Ersland, K. M., Hаvik, B., Rinholm, J. E., et al., “LOC689986, a unique gene showing specific expression in restricted areas of the rodent neocortex,” BMC Neurosci., 14, 68 (2013).

  • Evans, D. G., “Dominantly inherited microcephaly, hypotelorism and normal intelligence,” Clin. Genet., 39, No. 2, 178–180 (1991).

    CAS  PubMed  Google Scholar 

  • Fabbro, F., Aglioti, S. M., Bergamasco, M., et al., “Evolutionary aspects of self-and world consciousness in vertebrates,” Front. Hum. Neurosci., 9, 157 (2015).

  • Faheem, M., Naseer, M. I., Rasool, M., et al., “Molecular genetics of human primary microcephaly: an overview,” BMC Med. Genomics, 8, Suppl. 1, S4 (2015).

  • Fisher, S. E., Lai, C. S., and Monaco, A. P., “Deciphering the genetic basis of speech and language disorders,” Annu. Rev. Neurosci., 26, 57–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Geschwind, N. and Levitsky, W., “Human brain: left-right asymmetries in temporal speech region,” Science, 161, No. 3837, 186–187 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund, Y., “The neuroethological paradox of animal consciousness,” Trends Neurosci., 40, No. 4, 196–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Hagan, S., Hameroff, S. R., and Tuszyński, J. A., “Quantum computation in brain microtubules: decoherence and biological feasibility,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 65, No. 6, 061901 (2002).

  • Hameroff, S., “Consciousness, the brain, and spacetime geometry,” Ann. N. Y. Acad. Sci., 929, 74–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hameroff, S., “Quantum walks in brain microtubules – a biomolecular basis for quantum cognition?” Top. Cogn. Sci., 6, No. 1, 91–97 (2014).

    Article  PubMed  Google Scholar 

  • Harley, H. E., “Consciousness in dolphins? A review of recent evidence,” J. Comp. Physiol. A., 199, No. 6, 565–582 (2013).

    Article  Google Scholar 

  • Hawkins, J., On Intelligence, An Owl Book, New York (2004).

  • Hennekam, R. C., van Rhijn, A., and Hennekam, F. A., “Dominantly inherited microcephaly, short stature and normal intelligence,” Clin. Genet., 41, No. 5, 248–251 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Hickok, G., “Computational neuroanatomy of speech production,” Nat. Rev. Neurosci., 13, No. 1, 135–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofman, M. A., “Evolution of the human brain: when bigger is better,” Front. Neuroanat., 8, 15 (2014).

  • Kandel, E. R., Schwartz, J. H., Jessel, T. M., et al. (eds.), Principles of Neural Science, McGraw-Hill, New York (2013), 5th ed.

  • Koch, C., The Quest for Consciousness: A Neurobiological Approach, Roberts and Co., Engdewood (2004).

  • Korf, J., “Quantum and multidimensional explanations in a neurobiological context of mind,” Neuroscientist, 21, No. 4, 345–355 (2015).

    Article  PubMed  Google Scholar 

  • Leamey, C. A., Glendining, K. A., Kreiman, G., et al., “Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways,” Cereb. Cortex, 18, No. 1, 53–66 (2008).

    Article  PubMed  Google Scholar 

  • Li, N. and Bartlett, C. W., “Defi ning the genetic architecture of human developmental language impairment,” Life Sci., 90, No. 5, 469–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman, E. A., Minina, S. V., and Shklovskii-Kordi, N. E., The Brain as a Quantum Computer System and Approaches to Uniting the Sciences, Institute of Problems in Information Transmission, USSR Academy of Sciences, Moscow (1987).

  • Liberman, E. A., Minina, S. V., and Shklovsky-Kordi, N. E., “Quantum molecular computer model of the neuron and a pathway to the union of the sciences,” Biosystems, 22, No. 2, 135–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Manin, D. Yu. and Manin, Yu. I., “Cognitive networks: brains, internet, and civilizationsm” in: Humanizing Mathematics and its Philosophy, Sriraman, B. (ed.), Springer, Berlin (2017), pp. 85–96, https://arxiv.org/pdf/1709.03114.pdf.

  • Manin, Yu. I., Mathematics as Metaphor, Moscow Center for Continuing Mathematics Education, Moscow (2008).

  • Marcus, G., Marblestone, A., and Dean, T., “The atoms of neural computation. Does the brain depend on a set of elementary, reusable computations?” Science, 346, No. 6209, 551–552 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mather, J. A., “Cephalopod consciousness: behavioural evidence,” Conscious Cogn., 17, No. 1, 37–48 (2008).

    Article  PubMed  Google Scholar 

  • McCreary, B. D., Rossiter, J. P., and Robertson, D. M., “Recessive (true) microcephaly: a case report with neuropathological observations,” J. Intellect. Disabil. Res., 40, No. 1, 66–70 (1996).

    Article  PubMed  Google Scholar 

  • Nikol’skaya, A. V., “Do animals have consciousness?” Filosof. Nauki, 6, 86–101 (2013).

    Google Scholar 

  • Penrose, R., “Consciousness, the brain, and spacetime geometry: an addendum. Some new developments on the Orch OR model for consciousness,” Ann. N. Y. Acad. Sci., 929, 105–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Priebe, N. J. and Ferster, D., “Mechanisms of Neuronal computation in mammalian visual cortex,” Neuron, 75, No. 2, 194–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quian Quiroga, R., “Concept cells: the building blocks of declarative memory functions,” Nat. Rev. Neurosci., 13, No. 8, 587–597 (2012).

    Article  CAS  Google Scholar 

  • Quian Quiroga, R., Fried, I., and Koch, C., “Brain cells for grandmother,” Sci. Am., 308, No. 2, 30–35(2013).

    Article  Google Scholar 

  • Quian Quiroga, R., Kraskov, A., Koch, C., and Fried, I., “Explicit encoding of multimodal percepts by single neurons in the human brain,” Curr. Biol., 19, No. 15, 1308–1313 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., and Fried, I., “Invariant visual representation by single neurons in the human brain,” Nature, 435, No. 7045, 1102–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ramírez, M. L., Rivas, F., and Cantú, J. M., “Silent microcephaly: a distinct autosomal dominant trait,” Clin. Genet., 23, No. 3, 281–286 (1983).

    PubMed  Google Scholar 

  • Reader, R. H., Covill, L. E., Nudel, R., and Newbury, D. F., “Genome-wide studies of specific language impairment,” Curr. Behav. Neurosci. Rep., 1, No. 4, 242–250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzo, R. and Pavone, L., “Autosomal-recessive microcephaly in two siblings, one with normal IQ and both with protruding mandible, small ears, and curved nose,” Am. J. Med. Genet., 59, No. 4, 421–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Rossi, L. N., Candini, G., Scarlatti, G., et al., “Autosomal dominant microcephaly without mental retardation,” Am. J. Dis. Child., 141, No. 6, 655–659 (1987).

    CAS  PubMed  Google Scholar 

  • Seemanová, E., Passarge, E., Beneškova, D., et al., “Familial microcephaly with normal intelligence, immunodeficiency, and risk for lymphoreticular malignancies: a new autosomal recessive disorder,” Am. J. Med. Genet., 20, No. 4, 639–648 (1985).

    Article  PubMed  Google Scholar 

  • Smith, C., Biology of Sensory Systems [Russian translation], BINOM, Moscow (2005).

  • Spence, C. E., Osman, M., and McElligott, A. G., “Theory of animal mind: Human nature or experimental artefact?” Trends Cogn. Sci., 21, No. 5, 333–343 (2017).

    Article  PubMed  Google Scholar 

  • Stansberg, C., Ersland, K. M., van der Valk, P., and Steen, V. M., “Gene expression in the rat brain: high similarity but unique differences between frontomedial, temporal, and occipital cortex,” BMC Neurosci., 12, 15 (2011).

  • Trimborn, M., Richter, R., Sternberg, N., et al., “The first missense alteration in the MCPH1 gene causes autosomal recessive microcephaly with an extremely mild cellular and clinical phenotype,” Hum. Mutat., 26, No. 5, 496 (2005).

    Article  PubMed  Google Scholar 

  • Weiss, S. A., Alvarado-Rojas, C., Bragin, A., et al., “Ictal onset patterns of local field potentials, high frequency oscillations, and unit activity in human mesial temporal lobe epilepsy,” Epilepsia, 57, No. 1, 111–121 (2016).

    Article  PubMed  Google Scholar 

  • Wilder, B. G., “Exhibition of, and preliminary note upon, a brain of about one-half the average size from a white man of ordinary weight and intelligence,” J. Nervous Ment. Dis., 30, No. 1, 95–97 (1911).

    Google Scholar 

  • Woods, C. G., Bond, J., and Enard, W., “Autosomal recessive primary microcephaly (MCPH): A review of clinical, molecular, and evolutionary findings,” Am. J. Hum. Genet., 76, No. 5, 717–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie, E. (ed.), The Treatment of Epilepsy: Principles and Practice, Lippincott Williams Wilkins, Philadelphia (2006), 4th ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Arshavsky.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 2, pp. 152–162, March–April, 2018.

In memory of my teachers Mark Victorovich Kirzon, Mikhail Georgievich Udel’nov, Aleksand Nikolaevich Kabanov, and Israel Moiseevich Gelfand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshavsky, Y.I. Can Consciousness in Animals Be Assessed on the Basis of Their Behavior?. Neurosci Behav Physi 49, 686–693 (2019). https://doi.org/10.1007/s11055-019-00788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00788-y

Keywords

Navigation