Skip to main content
Log in

Functional and Anatomical Connectivity of the Brain in Poststroke Aphasia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses studies of the functional connectivity of the brain in the resting state after stroke and one of its sequelae – aphasia. Neuroimaging methods have recorded extensive functional neural networks in the brain responsible for various functions, particularly speech. Activity in these networks can be recorded even in the absence of any tasks – in the resting state – which overcomes a whole series of methodological limitations associated with studies of this type. It becomes possible to study neural networks in patients with poststroke aphasia as models of deviations in various speech functions. This review presents existing research on the organization of speech-related neural networks and their reorganization in poststroke aphasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard, S. and Bullmore, E., “Efficiency and cost of economical brain functional networks,” PLoS Comput. Biol., 3, e17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agosta, F., Galantucci, S., Valsasina, P., et al., “Disrupted brain connectome in semantic variant of primary progressive aphasia,” Neurobiol. Aging, 35, 2646–2655 (2014).

    Article  PubMed  Google Scholar 

  • Albert, N. B., Robertson, E. M., and Miall, R. C., “The resting human brain and motor learning,” Curr. Biol., 19, 1023–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand, A., Li, Y., Wang, Y., et al., “Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study,” Biol. Psychiatry, 57, 1079–1088 (2005).

    Article  PubMed  Google Scholar 

  • Bartolomeo, P., “The quest for the ‘critical lesion site’ in cognitive deficits: problems and perspectives,” Cortex, 47, 1010–1012 (2011).

    Article  PubMed  Google Scholar 

  • Bartolomeo, P., Thiebaut de Schotten, M., and Doricchi, F., “Left unilateral neglect as a disconnection syndrome,” Cereb. Cortex, 17, 2479–2490 (2007).

    Article  PubMed  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., et al., “Toward discovery science of human brain function,” Proc. Natl. Acad. Sci. USA, 107, 4734–9 (2010).

    Article  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S., “Functional connectivity in the motor cortex of resting human brain using,” Magn. Reson. Med., 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Bluhm, R. L., Miller, J., Lanius, R. A., et al., “Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network,” Schizophr. Bull., 33, 1004–12 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonilha, L., Gleichgerrcht, E., Nesland, T., et al., “Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks,” Neurorehabil. Neural Repair, 30, No. 3, 266–279 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonilha, L., Nesland, T., Rorden, C., et al., “Mapping remote subcortical ramifications of injury after ischemic strokes,” Behav. Neurol., 2014, 215380 (2014).

    Google Scholar 

  • Brown, C. E., Aminoltejari, K., Erb, H., et al., “In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites,” J. Neurosci., 29, 1719–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Zang, Y., Sun, L., et al., “Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study,” Neuroreport, 17, 1033–6 (2006).

    Article  PubMed  Google Scholar 

  • Cheng, H. L., Lin, C. J., Soong, B. W., et al., “Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis,” Stroke, 43, 2567–73 (2012).

    Article  PubMed  Google Scholar 

  • Cherkassky, V. L., Kana, R. K., Keller, T. A., and Just, M. A., “Functional connectivity in a baseline resting-state network in autism,” Neuroreport, 17, 1687–90 (2006).

    Article  PubMed  Google Scholar 

  • Cole, D., Smith, S., and Beckmann, C., “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front. Syst. Neurosci. (2010), www.ncbi.nlm.nih.gov.sci-hub.org/pmc/articles/PMC2854531/, acc. 02.09.2015.

  • Damoiseaux, J. S., Rombouts, S., Barkhof, F., et al., “Consistent resting- state networks across healthy subjects,” Proc. Natl. Acad. Sci. USA, 103, 13848–13853 (2006).

    Article  CAS  PubMed  Google Scholar 

  • De Luca, M., Beckmann, C. F., De Stefano, N., et al., “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” Neuroimage, 29, 1359–1367 (2006).

    Article  PubMed  Google Scholar 

  • Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., and Bartolomeo, P., “White matter (dis) connections and gray matter (dys) functions in visual neglect: gaining insights into the brain networks of spatial awareness,” Cortex, 44, 983–95 (2008).

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., et al., “Distinct brain networks for adaptive and stable task control in humans,” Proc. Natl. Acad. Sci. USA, 104, 11073–11078 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Forkel, S. J., De Schotten, M. T., Dell’Acqua, F., et al., “Anatomical predictors of aphasia recovery: A tractography study of bilateral perisylvian language networks,” Brain, 137, 2027–2039 (2014).

    Article  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., et al., “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. USA, 102, 9673–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., and Penny, W., “Dynamic causal modelling,” Neuroimage, 19, No. 4, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Friston, K., “Causal modelling and brain connectivity in functional magnetic resonance imaging,” PLoS Biol., 7, No. 2 (2009).

  • Fukunaga, M., Horovitz, S. G., van Gelderen, P., et al., “Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages,” Magn. Reson. Imaging, 24, 979–92 (2006).

    Article  PubMed  Google Scholar 

  • Gillebert, C. R., Mantini, D., Thijs, V., et al., “Lesion evidence for the critical role of the intraparietal sulcus in spatial attention,” Brain, 134, 1694–709 (2011).

    Article  PubMed  Google Scholar 

  • Golestani, A.-M., Tymchuk, S., Demchuk, A., and Goodyear, B. G., “Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis,” Neurorehabil. Neural Repair, 27, 153–163 (2013).

    Article  PubMed  Google Scholar 

  • Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V., “Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI,” Proc. Natl. Acad. Sci. USA, 101, 4637–4642 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gusnard, D. A., Raichle, M. E., MacLeod, A. M., et al., “A default mode of brain function,” Proc. Natl. Acad. Sci. USA, 98, 676–682 (2001).

    Article  PubMed  Google Scholar 

  • Harvey, D. Y., Wei, T., Ellmore, T. M., et al., “Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control,” Neuropsychologia, 51, 789–801 (2013).

    Article  PubMed  Google Scholar 

  • He, Y., Chen, Z. J., and Evans, A. C., “Small-world anatomical networks in the human brain revealed by cortical thickness from MRI,” Cereb. Cortex, 17, 2407–2419 (2007).

    Article  PubMed  Google Scholar 

  • Humphreys, G. F., Hoffman, P., Visser, M., et al., “Establishing task-and modality-dependent dissociations between the semantic and default mode networks,” Proc. Natl. Acad. Sci. USA, 112, 7857–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Irimia, A., and van Horn, J. D., “Systematic network lesioning reveals the core white matter scaffold of the human brain,” Front. Hum. Neurosci., 8, 51 (2014).

  • Jarso, S., Li, M., Faria, A., et al., “Distinct mechanisms and timing of language recovery after stroke,” Cogn. Neuropsychol., 30, No. 7–8, 454–475 (2013).

    Article  PubMed  Google Scholar 

  • Johnston, D. G., Denizet, M., Mostany, R., and Portera-Cailliau, C., “Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke,” Cereb. Cortex, 23, 751–762 (2013).

    Article  PubMed  Google Scholar 

  • Kalénine, S., Buxbaum, L. J., and Coslett, H. B., “Critical Brain regions for action recognition: lesion symptom mapping in left hemisphere stroke,” Brain, 133, 3269–80 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnath, H.-O., Rorden, C., and Ticini, L. F., “Damage to white matter fiber tracts in acute spatial neglect,” Cereb. Cortex, 19, 2331–7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiran, S., Meier, E., Kapse, K., and Glynn, P., “Integration demands modulate effective connectivity in a fronto-temporal network for contextual sentence integration,” Neuroimage, 147, 812–24 (2017).

    Article  Google Scholar 

  • Kiviniemi, V., Kantola, J.-H., Jauhiainen, J., et al., “Independent component analysis of nondeterministic fMRI signal sources,” Neuroimage, 19, 253–260 (2003).

    Article  PubMed  Google Scholar 

  • Lassalle-Lagadec, S., Sibon, I., Dilharreguy, B., et al., “Subacute default mode network dysfunction in the prediction of post-stroke depression severity,” Radiology, 264, 218–224 (2012).

    Article  PubMed  Google Scholar 

  • Lebedeva, N. N., Mayorova, L. A., Karimova, E. D., and Kazimirova, E. A., “The connectome: neurophysiology, advances, and perspectives,” Usp. Fiziol. Nauk., 46, 17–45 (2015).

    CAS  PubMed  Google Scholar 

  • Liang, M., Zhou, Y., Jiang, T., et al., “Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging,” Neuroreport, 17, 209–13 (2006).

    Article  PubMed  Google Scholar 

  • Lim, J. S. and Kang, D. W., “Stroke connectome and its implications for cognitive and behavioral sequela of stroke,” J. Stroke, 17, 256–267 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Liu, Y., Yu, C., et al., “Whole brain functional connectivity in the early blind,” Brain, 130, 2085–2096 (2007).

    Article  PubMed  Google Scholar 

  • Marangolo, P., Fiori, V., Sabatini, U., et al., “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci., 28, 724–738 (2016).

    Article  PubMed  Google Scholar 

  • Mostany, R., Chowdhury, T. G., Johnston, D. G., et al., “Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex,” J. Neurosci., 30, 14116–14126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, T. H., Li, P., Betts, K., and Liu, R., “Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines,” J. Neurosci., 28, 1756–1772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, V. A., Young, B. M., La, C., et al., “Functional connectivity changes in the language network during stroke recovery,” Ann. Clin. Transl. Neurology, 2, 185–195 (2015).

    Article  Google Scholar 

  • Peltier, S. J., Kerssens, C., Hamann, S. B., et al., “Functional connectivity changes with concentration of sevoflurane anesthesia,” Neuroreport, 16, 285–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rehme, A. K., Fink, G. R., Von Cramon, D. Y., and Grefkes, C., “The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRI,” Cereb. Cortex, 21, 756–768 (2011).

    Article  PubMed  Google Scholar 

  • Risher, W. C., Croom, D., and Kirov, S. A., “Persistent astroglial swelling accompanies rapid reversible dendritic injury during stroke-induced spreading depolarizations,” Glia, 60, 1709–1720 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosazza, C. and Minati, L., “Resting-state brain networks: Literature review and clinical applications,” Neurol. Sci., 32, 773–785 (2011).

    Article  PubMed  Google Scholar 

  • Saleh, S., Adamovich, S. V., and Tunik, E., “Resting state functional connectivity and task-related effective connectivity changes after upper extremity rehabilitation: a pilot study,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012, 4559–4562 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Saur, D., Lange, R., Baumgaertner, A., et al., “Dynamics of language reorganization after stroke,” Brain, 129, 1371–1384 (2006).

    Article  PubMed  Google Scholar 

  • Sebastian, R., Long, C., Purcell, J. J., et al., “Imaging network level language recovery after left PCA stroke,” Restor. Neurol. Neurosci., 34, No. 4, 4783–489 (2016), doi: https://doi.org/10.3233/RNN-150621.

    Article  Google Scholar 

  • Smith, D. V., Utevsky, A. V., Bland, A. R., et al., “Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches,” Neuroimage, 95, 1–12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., et al., “Correspondence of the brain’s functional architecture during activation and rest,” Proc. Natl. Acad. Sci. USA, 106, 13040–13045 (2009).

    Article  PubMed  Google Scholar 

  • Sonty, S. P., Mesulam, M.-M., Weintraub, S., et al., “Altered effective connectivity within the language network in primary progressive Aphasia,” J. Neurosci., 27, 1334–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns, O., “Brain connectivity,” Scholarpedia, 2, 4695 (2007).

    Article  Google Scholar 

  • Tian L, Jiang, T., Wang, Y., et al., “Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder,” Neurosci. Lett., 400, 39–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Urbanski, M., Thiebaut de Schotten, M., Rodrigo, S., et al., “DTI-MR tractography of white matter damage in stroke patients with neglect,” Exp. Brain Res., 208, 491–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  • van Dellen, E., Hillebrand, A., Douw, L., et al., “Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity,” Neuroimage, 83, 524–532 (2013).

    Article  PubMed  Google Scholar 

  • van den Heuvel, M. P., Stam, C. J., Kahn, R. S., and Hulshoff Pol, H. E., “Efficiency of functional brain networks and intellectual performance,” J. Neurosci., 29, 7619–7624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hees, S., McMahon, K., Angwin, A., et al., “A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia,” Hum. Brain Mapp., 35, 3919–3931 (2014).

    Article  PubMed  Google Scholar 

  • Veroude, K., Norris, D. G., Shumskaya, E., et al., “Functional connectivity between brain regions involved in learning words of a new language,” Brain Lang., 113, 21–27 (2010).

    Article  PubMed  Google Scholar 

  • Vincent, J. L., Patel, G. H., Fox, M. D., et al., “Intrinsic functional architecture in the anaesthetized monkey brain,” Nature, 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Vitali, P., Tettamanti, M., Abutalebi, J., et al., “Generalization of the effects of phonological training for anomia using structural equation modelling: a multiple single-case study. Neurocase, 16, No. 2, 93–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Waites, A. B., Briellmann, R. S., Saling, M. M., et al., “Functional connectivity networks are disrupted in left temporal lobe epilepsy,” Ann. Neurol., 59, 335–343 (2006).

    Article  PubMed  Google Scholar 

  • Wang L, Yu, C., Chen, H., et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, 133, 1224–1238 (2010).

    Article  PubMed  Google Scholar 

  • Wang, K., Jiang, T., Liang, M., et al., “Discriminative analysis of early Alzheimer’s disease based on two intrinsically anti-correlated networks with resting-state fMRI,” Med. Image Comput. Comput. Assist. Interv., 9, 340–347 (2006).

    PubMed  Google Scholar 

  • Wang, W., Wang, M., Liu, H., et al., “Functional connectivity in ischemia stroke motor aphasia patients during resting state,” Zhonghua Yi Xue Za Zhi, 94, 2135–2138 (2014).

    PubMed  Google Scholar 

  • Westlake, K. P., Hinkley, L. B., Bucci, M., et al., “Resting state α-band functional connectivity and recovery after stroke,” Exp. Neurol., 237, 160–169 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, M., Li, J., Li, Y., et al., “Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia,” Sci. Rep., 6, 24803 (2016a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, M., Li, J., Yao, D., and Chen, H., “Disrupted intrinsic local synchronization in poststroke aphasia,” Medicine (Baltimore), 95, e3101 (2016b).

    Article  CAS  Google Scholar 

  • Yeh, F.-C., Tang, P.-F., and Tseng, W.-Y. I., “Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke,” Neuroimage Clin., 2, 912–921 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., Xu, Q., Dai, J., et al., “Dysfunction of affective network in post ischemic stroke depression: a resting-state functional magnetic resonance imaging study,” Biomed. Res. Int., 2014, 846–830 (2014).

    Google Scholar 

  • Zhou, Y., Liang, M., Tian, L., et al., “Functional disintegration in paranoid schizophrenia using resting-state fMRI,” Schizophr. Res., 97, 194–205 (2007).

    Article  PubMed  Google Scholar 

  • Zhu, D., Chang, J., Freeman, S., et al., “Changes of functional connectivity in the left frontoparietal network following aphasic stroke,” Front. Behav. Neurosci., 8, 167 (2014).

  • Zito, G., Luders, E., Tomasevic, L., et al., “Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis,” Neuroscience, 266, 47–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Mayorova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 2, pp. 141–151, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorova, L.A., Alferova, V.V., Kuptsova, S.V. et al. Functional and Anatomical Connectivity of the Brain in Poststroke Aphasia. Neurosci Behav Physi 49, 679–685 (2019). https://doi.org/10.1007/s11055-019-00787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00787-z

Keywords

Navigation