Skip to main content

Advertisement

Log in

Three Families of Channelrhodopsins and Their Use in Optogenetics (review)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Channelrhodopsins are retinylidene proteins unique in their ability to generate light-gated passive ion currents across the membrane. Heterologous expression of channelrhodopsins in animal cells, most notably, neurons, enables precise millisecond-scale control of their activity (optogenetics). For 15 years only cation-conducting channelrhodopsins derived from chlorophyte (green) algae have been known, which now are widely used in neuroscience research to stimulate neurons with light. Recently a distinct family of channelrhodopsins with strictly anion selectivity has been discovered in phylogenetically distant cryptophyte flagellate algae. Furthermore, the genomes of the latter microorganisms also encode a structurally distinct group of rhodopsins capable of cation channel activity using different molecular mechanisms as compared to their chlorophyte counterparts. In this review, we mostly focus on the two latest additions and their utility for optogenetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonsa H., Lakey J. H., Lightowlers R. N., and Trevelyan A. J., “Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons,” Nat. Commun., 7, 13495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrasfalvy B. K., Zemelman B. V., Tang J., and Vaziri A., “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. USA, 107, 11981–11986 (2010).

    Article  PubMed  Google Scholar 

  • Bamann C., Gueta R., Kleinlogel S., et al., “Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond,” Biochemistry, 49, 267–278 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Berndt A., Lee S. Y., Wietek J., et al., “Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity,” Proc. Natl. Acad. Sci. USA, 113, 822–829 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Berndt A., Yizhar O., Gunaydin L. A., et al., “Bi-stable neural state switches,” Nat. Neurosci., 12, 229–234 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Boyden E. S., “Optogenetics and the future of neuroscience,” Nat. Neurosci., 18, 1200–1201 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Boyden E. S., Zhang F., Bamberg E., et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, 1263–1268 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Chow B. Y. and Boyden E. S., “Optogenetics and translational medicine,” Sci. Transl. Med., 5, 177ps175 (2013).

  • Cohen A. E., “Optogenetics: Turning the microscope on its head,” Biophys. J., 110, 997–1003 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deisseroth K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neurosci., 18, 1213–1225 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deisseroth K., Feng G., Majewska A. K., et al., “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci., 26, 10380–10386 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolgikh D. A., Malyshev A. Yu., Roshchin M. V., et al., “Comparative characteristics of two anion-channel rhodopsins and prospects of their use in optogenetics,” Dokl. Biochem. Biophys., 471, 440–442 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Feldbauer K., Zimmermann D., Pintschovius V., et al., “Channelrhodopsin-2 is a leaky proton pump,” Proc. Natl. Acad. Sci. USA, 106, 12317–12322 (2009).

    Article  PubMed  Google Scholar 

  • Foster K.-W., Saranak J., Patel N., et al., “A rhodopsin is the functional photoreceptor for phototaxis in the unicelullar eukaryote Chlamydomonas,” Nature, 311, 756–759 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Govorunova E. G., Cunha C. R., Sineshchekov O. A., and Spudich J. L. “Anion channelrhodopsins for inhibitory cardiac optogenetics,” Sci. Rep., 6, 33530 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govorunova E. G., Sineshchekov O. A., Li H., et al., “Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis,” J. Biol. Chem., 288, 29911–29922 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govorunova E. G., Sineshchekov O. A., Li H., and Spudich J. L. “Microbial rhodopsins: Diversity, mechanisms, and optogenetic applications,” Annu. Rev. Biochem. (2017а).

  • Govorunova E. G., Sineshchekov O. A., Liu X., et al., “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics,” Science, 349, 647–650 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govorunova E. G., Sineshchekov O. A., Rodarte E. M., et al., “The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity,” Sci. Rep., 7, 43358 (2017b).

  • Govorunova E. G., Sineshchekov O. A., and Spudich J. L. “Structurally distinct cation channelrhodopsins from cryptophyte algae,” Biophys. J., 110, 2302–2304 (2016a).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou S. Y., Govorunova E. G., Ntefidou M., et al., “Diversity of Chlamydomonas channelrhodopsins,” Photochem. Photobiol., 88, 119–128 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Kato H. E., Kamiya M., Sugo S., et al., “Atomistic design of microbial opsin-based blue-shifted optogenetics tools,” Nat. Commun., 6, 7177 (2015).

  • Kato H. E., Zhang F., Yizhar O., et al., “Crystal structure of the channelrhodopsin light-gated cation channel,” Nature, 482, 369–374 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keeling P. J., Burki F., Wilcox H. M., et al., “The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing,” PLoS Biol., 12, e1001889 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klapoetke N. C., Murata Y., Kim S. S., et al., “Independent optical excitation of distinct neural populations,” Nat. Methods, 11, 338–346 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klapper S. D., Swiersy A., Bamberg E., and Busskamp V., “Biophysical properties of optogenetic tools and their application for vision restoration approaches,” Front. Syst. Neurosci., 10, 74 (2016).

  • Kleinlogel S., Feldbauer K., Dempski R. E., et al., “Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh,” Nat. Neurosci., 14, 513–518 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Lewis T. L., Jr., Mao T., Svoboda K., and Arnold D. B., “Myosin-dependent targeting of transmembrane proteins to neuronal dendrites,” Nat. Neurosci., 12, 568–576 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X., Gutierrez D. V., Hanson M. G., et al., “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. USA, 102, 17816–17821 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lin J. Y., Knutsen P. M., Muller A., et al., “ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation,” Nat. Neurosci., 16, 1499–1508 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J. Y., Lin M. Z., Steinbach P., and Tsien R. Y., “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J., 96, 1803–1814 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Litvin F. F., Sineshchekov O. A., and Sineshchekov V. A., “Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis,” Nature, 271, 476–478 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Lorenz-Fonfria V. A. and Heberle J., “Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel,” Biochim. Biophys. Acta, 1837, 626–642 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Lorenz-Fonfria V. A., Resler T., Krause N., et al., “Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating,” Proc. Natl. Acad. Sci. USA, 110, E1273–1281 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Lorincz M. L. and Adamantidis A. R., “Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics,” Prog. Neurobiol., 151, 237–253 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Mahn M., Prigge M., Ron S., et al., “Biophysical constraints of optogenetic inhibition at presynaptic terminals,” Nat. Neurosci., 19, 554–556 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malyshev A. Y., Roshchin M. V., Smirnova G. R., et al., “Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light,” Neurosci. Lett., 640, 76–80 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Matasci N., Hung L. H., Yan Z., et al., “Data access for the 1,000 Plants (1KP) project,” Gigascience, 3, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammad F., Stewart J. C., Ott S., et al., “Optogenetic inhibition of behavior with anion channelrhodopsins,” Nat. Methods, 14, 271–274 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Mukohata Y. and Kaji Y., “Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N’-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847),” Arch. Biochem. Biophys., 206, 72–76 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Nagel G., Brauner M., Liewald J. F., et al., “Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol., 15, 2279–2284 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Nagel G., Ollig D., Fuhrmann M., et al., “Channelrhodopsin-1: a light-gated proton channel in green algae,” Science, 296, 2395–2398 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Nagel G., Szellas T., Huhn W., et al., “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. USA, 100, 13940–13945 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt D. and Stoeckenius W., “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature, 233, 149–152 (1971).

    CAS  Google Scholar 

  • Park S. A., Lee S. R., Tung L., and Yue D. T., “Optical mapping of optogenetically shaped cardiac action potentials,” Sci. Rep., 4, 6125 (2014).

  • Paz J. T., Davidson T. J., Frechette E. S., et al., “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci., 16, 64–70 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Price G. D. and Trussell L. O., “Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of Held,” J. Neurosci., 26, 11432–11436 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schneider F., Grimm C., and Hegemann P., “Biophysics of channelrhodopsin,” Annu. Rev. Biophys., 44, 167–186 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Schobert B. and Lanyi J. K., “Halorhodopsin is a light-driven chloride pump,” J. Biol. Chem., 257, 10306–10313 (1982).

    PubMed  CAS  Google Scholar 

  • Sineshchekov O. A., Govorunova E. G., Li H., and Spudich J. L., “Gating mechanisms of a natural anion channelrhodopsin,” Proc. Natl. Acad. Sci. USA, 112, 14236–14241 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov O. A., Govorunova E. G., and Spudich J. L., “Photosensory functions of channelrhodopsins in native algal cells,” Photochem. Photobiol., 85, 556–563 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sineshchekov O. A., Jung K.-H., and Spudich J. L., “Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA, 99, 8689–8694 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov O. A., Li H., Govorunova E. G., and Spudich J. L., “Photochemical reaction cycle transitions during anion channelrhodopsin gating,” Proc. Natl. Acad. Sci. USA, 113, E1993–2000 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov O. A. and Spudich J. L., Sensory Rhodopsin Signaling in Green Flagellate Algae. Handbook of Photosensory Receptors, Wiley-VCH, Weinheim (2005), pp. 25–42.

    Book  Google Scholar 

  • Tsunoda S. P. and Hegemann P., “Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation,” Photochem. Photobiol., 85, 564–569 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Verhoefen M. K., Bamann C., Blocher R., et al., “The photocycle of channelrhodopsin-2: Ultrafast reaction dynamics and subsequent reaction steps,” Chemphyschem., 11, 3113–3122 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wietek J., Beltramo R., Scanziani M., et al., “An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo,” Sci. Rep., 5, 14807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wietek J., Broser M., Krause B. S., and Hegemann P., “Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata,” J. Biol. Chem., 291, 4121–4127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wietek J. and Prigge M., “Enhancing channelrhodopsins: An overview,” Methods Mol. Biol., 1408, 141–165 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Zhang F., Vierock J., Yizhar O., et al., “The microbial opsin family of optogenetic tools,” Cell, 147, 1446–1457 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F., Wang L. P., Brauner M., et al., “Multimodal fast optical interrogation of neural circuitry,” Nature, 446, 633–639 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Zhao M., Alleva R., Ma H., et al., “Optogenetic tools for modulating and probing the epileptic network,” Epilepsy Res., 116, 15–26 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Spudich.

Additional information

Published (in Russian) in Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 5, pp. 9–17, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorunova, E.G., Sineshchekov, О.А. & Spudich, J.L. Three Families of Channelrhodopsins and Their Use in Optogenetics (review). Neurosci Behav Physi 49, 163–168 (2019). https://doi.org/10.1007/s11055-019-00710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00710-6

Navigation