Skip to main content


Log in

Immunohistochemical Characteristics of Neurons in the Substantia Nigra of the Human Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To identify the cytochemical chromosomes of structurally unaltered neurons in the substantia nigra of the human brain using a wide spectrum of immunocytochemical markers, some of which (glutamate decarboxylase 65, PGP 9.5, unphosphorylated neurofilament proteins, α-tubulin) have not previously been used in studies of dopaminergic neurons in humans. Materials and methods. The study used fragments of human midbrain (17 men and women aged 28–78 years) obtained from the archive of the Department of General and Special Morphology, Institute of Experimental Medicine. Studies were performed using classical neurohistology and immunocytochemistry methods using antibodies to 15 different proteins. Results. Most neurons in the substantia nigra were characterized by decreased expression of general neuronal markers – nuclear protein NeuN, protein PGP 9.5, and neuron-specific enolase. The substantia nigra was not found to contain GABAergic (GAD65-immunopositive) neurons. The dorsal part of this area contained occasional cholinergic neurons not containing neuromelanin. Calcium-binding proteins calbindin and calretinin were absent from most nigral cells, though the dorsal part of the substantia nigra contained occasional calbindin-containing neurons, while the ventral part contained occasional calretinin-containing neurons. Nitric oxide synthase was present in both the neuropil and neuron bodies in the substantia nigra. Conclusions. The data obtained here provide evidence of the unique cytochemical properties of nigral neurons, which may be associated with their increased predisposition to degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. V. A. Otellin and E. B. Arushanyan, The Nigrostriatal System, Meditsina, Moscow (1989).

    Google Scholar 

  2. V. L. Golubev, Ya. I. Levin, and A. M. Vein, Parkinson’s Disease and Parkinsonism Syndrome, Medpress, Moscow (1999).

    Google Scholar 

  3. D. N. Voronkov, R. M. Khudoerkov, and E. L. Dovedova, “Changes in neuroglial interactions in nigrostriatal structures of the brain in models of dysfunction of the dopaminergic system,” Zh. Nevrol. Psikhiat., 113, No. 7, 47–51 (2013).

    CAS  Google Scholar 

  4. V. G. Khaindrava, E. A. Kozina, V. G. Kucheryanu, G. N. Kryzhanovskii, V. S. Kudrin, P. A. Klodt, E. V. Bocharov, K. S. Raevskii, and M. V. Ugryumov, “Modeling of the preclinical and early stages of Parkinson’s disease,” Zh. Nevrol. Psikhiat., 110, No. 7, 41–47 (2010).

    CAS  Google Scholar 

  5. E. I. Gusev and A. B. Gekht (eds.), Motor Diseases: Medical and Social Aspects, Academy for Advanced Training and Professional Retraining for Educational Workers Press, Moscow (2010).

    Google Scholar 

  6. P. P. Michel, E. C. Hirsch, and S. Hunot, “Understanding dopaminergic cell death pathways in Parkinson disease,” Neuron, 90, No. 4, 675–691 (2016), doi:

    Article  CAS  PubMed  Google Scholar 

  7. E. G. Sukhorukova, O. S. Alekseeva, and D. E. Korzhevsky, “Catecholaminergic neurons of mammalian brain and neuromelanin,” J. Evol. Biochem. Physiol., 50, No. 5, 383–391 (2014), doi:

    Article  CAS  Google Scholar 

  8. F. A. Zucca, E. Basso, F. A. Cupaioli, E. Ferrari, D. Sulzer, L. Casella, and L. Zecca, “Neuromelanin of the human substantia nigra: an update,” Neurotox. Res., 25, No. 1, 13–23 (2014), doi:

    Article  CAS  PubMed  Google Scholar 

  9. I. P. Grigoriev, E. G. Sukhorukova, E. A. Kolos, and D. E. Korzhevskii, “Neuromelanin in substantia nigra neurons lacking tyrosine hydroxylase,” Neurosci. Behav. Physiol., 43, No. 4, 461–463 (2013), doi:

    Article  CAS  Google Scholar 

  10. P. Damier, E. C. Hirsch, Y. Agid, and A. M. Graybiel, “The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease,” Brain, 122, No. 8, 1437–1448 (1999), doi:

    Article  PubMed  Google Scholar 

  11. A. Parent, M. Fortin, P. Y. Cote, and F. Cicchetti, “Calcium-binding proteins in primate basal ganglia,” Neurosci. Res., 25, No. 4, 309–334 (1996),

    Article  CAS  PubMed  Google Scholar 

  12. A. I. Blazejewska, S. T. Schwarz, A. Pitiot, M. C. Stephenson, J. Lowe, N. Bajaj, R. W. Bowtell, D. P. Auer, and P. A. Gowland, “Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7T MRI,” Neurology, 81, No. 6, 534–540 (2013), doi:

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. Anderegg, J. F. Poulin, and R. Awatramani, “Molecular heterogeneity of midbrain dopaminergic neurons – Moving toward single cell resolution,” FEBS Lett., 589, No. 24, Pt A, 3714–3726 (2015), doi:

  14. D. E. Korzhevskii, E. G. Sukhorukova, O. V. Kirik, and I. P. Grigorev, “Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde,” Eur. J. Histochem., 59, No. 3, 25–30 (2015), doi:

    Article  CAS  Google Scholar 

  15. I. P. Grigor’ev and D. E. Korzhevskii, “Marinesco bodies – intranuclear inclusions in dopaminergic neurons,” Med. Akad. Zh., 15, No. 2, 28–34 (2015).

    Google Scholar 

  16. V. V. Gusel’nikova and D. E. Korzhevskiy, “NeuN as a neuronal nuclear antigen and neuron differentiation marker,” Acta Naturae, 7, No. 2, 42–47 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. V. N. Sal’kov, R. M. Khudoerkov, D. N. Voronkov, and N. S. Noss, “Morphometric indicators of structural heterogeneity of the substantia nigra of the brains of elderly men and women,” Arkh. Patol., 77, No. 4, 51–54 (2015), doi:

    Article  Google Scholar 

  18. R. Martinez-Murillo, R. Villalba, M. I. Montero-Caballero, and J. Rodrigo, “Cholinergic somata and terminals in the rat substantia nigra: an immunocytochemical study with optical and electron microscopic techniques,” J. Comp. Neurol., 281, No. 3, 397–415 (1989), doi:

    Article  CAS  PubMed  Google Scholar 

  19. N. S. Kolomeets and N. A. Uranova, “Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons,” Zh. Nevrol. Psikhiat., 97, No. 12, 39–43 (1997).

    CAS  Google Scholar 

  20. I. P. Grigorev, M. A. Shklyaeva, O. V. Kirik, E. G. Gilerovich, and D. E. Korzhevskii, “Distribution of alpha-tubulin in rat forebrain structures,” Neurosci. Behav. Physiol., 44, No. 1, 1–4 (2014), doi:

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Gusel’nikova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 117, No. 4, Iss. 1, pp. 50–55, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzhevskii, D.E., Grigor’ev, I.P., Sukhorukova, E.G. et al. Immunohistochemical Characteristics of Neurons in the Substantia Nigra of the Human Brain. Neurosci Behav Physi 49, 109–114 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: