Skip to main content
Log in

Electrographic Properties of Movement-Related Potentials

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The amplitude and spectral characteristics of the EEG recorded in 24 essentially healthy subjects during real and mental performance of hand, leg, and tongue movements were studied. Execution of movements was found to be accompanied by increases in the EEG power of the δ and θ frequencies on the background of marked reductions in the α and β1 frequencies. The sensorimotor and associative areas of both hemispheres of the brain were actively involved both in execution of real voluntary movements and mental imagery, especially at rapid (γ) frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, P. K., Essays in the Physiology of Functional System, Ripol Classic (1975).

  • Aslanyan, E. V., Kiroy, V. N., Lazurenko, D. M., and Bakhtin, O. M., “Properties of neural processes and the effectiveness of training with biological feedback,” Psikholog. Zh., 34, No. 002, 118–116 (2013).

    Google Scholar 

  • Aslanyan, E. V., Kiroy, V. N., Lazurenko, D. M., Bakhtin, O. M., and Minyaeva, N. R., “Spectral Characteristics of the EEG during the dynamics of voluntary motor activity,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 64, No. 2, 147–158 (2014), doi: https://doi.org/10.7868/50044467714020038.

    Article  Google Scholar 

  • Bernshtein, N. A., Essays on the Physiology of Movement and the Physiology of Activity, Meditsina, Moscow (1966).

    Google Scholar 

  • Danilova, N. N., Physiology of Higher Nervous Activity, Danilova, N. N., Krylova, A. L., Danilova, N. N., and Krylova, A. L. (eds.), Moscow State University Textbooks Series, Feniks, Rostov-on-Don (2005).

    Google Scholar 

  • Dumenko, V. N., “Functional role of neocortical activity in interregional interaction processes,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 64, No. 1, 3–20 (2014).

    CAS  Google Scholar 

  • Zinchenko, V. P., The Great Psychology Dictionary, OLMA Media Grupp (2005).

  • Ivanova, M. P., “Cortical mechanisms of voluntary movements in humans,” Department of Physiology, All-Russian Science Research Institute of Physical Culture, Nauka (1991).

  • Kaplan, A. Ya., Kochetova, A. G., Shishkin, S. L., Basyul, I. A., Ganin, I. P., Vasil’ev, A. N., and Liburkina, S. P., “Experimental theoretical bases and practical realization of the ‘brain–computer interface’ technologies,” Byull. Sib. Med., 12, No. 2, 21–29 (2013).

    Google Scholar 

  • Kiroy, V. N., Vladimirskii, B. M., Aslanyan, E. V., Bakhtin, O. M., and Minyaeva, N. R., “Electrographic correlates of real and mental movements: spectral analysis,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 60, No. 5, 517–525 (2010).

    Google Scholar 

  • Kiroy, V. N., Brain–Computer Interfaces (History, Current Situation, Perspectives), Southern Federal University, Rostov-on-Don (2011).

    Google Scholar 

  • Kiroy, V. N. and Belova, E. I., “Mechanisms of formation and the role of oscillatory activity of the neuron population in the systems activity of the brain,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 50, No. 2, 179–191 (2000).

    Google Scholar 

  • Luriya, A. R., “Higher Cortical Functions in Humans and their Impairments in Local Brain Damage, (1962).

  • Luriya, A. R., Lectures in General Psychology, Piter (2004).

  • Mokienko, O. A., Chernikova, L. A., Frolov, A. A., and Bobrov, P. D., “Motor imagery and its practical application,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 63, No. 2, 195–204 (2013).

    CAS  Google Scholar 

  • Sechenov, I. M., Refl exes of the Brain, Ripol Classic (1961).

  • Frolov, A. A., Biryukova, E. V., Bobrov, P. D., Mokienko, O. A., Platonov, A. K., Pryanichnikov, V. E., and Chernikova, L. A., “Principles of neurorehabilitation based on the use of ‘brain–computer interfaces’ and biologically appropriate control of exoskeletons,” Fiziol. Cheloveka, 39, No. 2, 99–113 (2013).

    CAS  PubMed  Google Scholar 

  • Shepovap’nikov, A. N., Tsitseroshin, M. N., and Apanasionok, V. S., Formation of the Biopotential Field of the Human Brain, Nauka (1979).

  • Accolla, E. A., Dukart, J., Helms, G., Weiskopf, N., Kherif, F., Lutti, A., and Draganski, B., “Brain tissue properties differentiate between motor and limbic basal ganglia circuits,” Hum. Brain Mapp., 35, No. 10, 5083–5092 (2014).

    Article  Google Scholar 

  • Alessandro, S., Roberta, M., Marco, P., Stefano, C., Lorenzo, F., “Functional MRI with motor imagery task show CNS effects and brain plasticity after botulinum toxin therapy in spastic hemiplegic stroke patients,” Int. J. Neurorehabil., 104, No. 1, 2376–0281 (2014).

    Google Scholar 

  • Almanza Sepúlveda, M. L., Llamas Alonso, J., Guevara, M. A., and Hernández González, M., “Increased prefrontal-parietal EEG gamma band correlation during motor imagery in expert video game players,” Actualidades en Psicologia, 117, No. 28, 163 (2014).

    Google Scholar 

  • Ang, K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., and Guan, C., “A randomized controlled trial of EEG-based motor imagery brain–computer interface robotic rehabilitation for stroke,” Clin. EEG Neurosci., 46, No. 4, 310–320 (2015).

    Article  Google Scholar 

  • Argyropoulos, G. P., Tremblay, P., and Small, S. L., “The neostriatum and response selection in overt sentence production: an fMRI study,” Neuroimage, 82, 53–60 (2013).

    Article  Google Scholar 

  • Aslanyan, E. V., Kiroy, V. N., Lazurenko, D. M., Bakhtin, O. M., and Minyaeva, N. R., “EEG spectral characteristics during voluntary motor activity,” Neurosci. Behav. Physiol., 45, No. 9, 1029–1037 (2015), doi https://doi.org/10.1007/s11055-015-0182-9.

    Article  Google Scholar 

  • Berman, B. D., Horovitz, S. G., Venkataraman, G., and Hallett, M., “Selfmodulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback,” Neuroimage, 59, No. 2, 917–925 (2012).

    Article  Google Scholar 

  • Blefari, M. L., Sulzer, J., Hepp-Reymond, M. C., Kollias, S., and Gassert, R., “Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery,” Front. Behav. Neurosci., 9, 18 (2015).

    Article  Google Scholar 

  • Bouchra, H. H., Ahmad, D., Aya, K., and Ahmad, R. S., “Electroencephalography measurement to compare visual and kinesthetic motor imagery of squat vertical jump,” Int. J. Phys. Med. Rehabil., 323, No. 4, 2 (2016).

    Google Scholar 

  • Bowsher, K., Civillico, E. F., Coburn, J., Collinger, J., Contreras-Vidal, J. L., Denison, T., and Hoffmann, M., “Brain–computer interface devices for patients with paralysis and amputation: a meeting report,” J. Neural Eng., 13, No. 2, 023001 (2016).

    Article  CAS  Google Scholar 

  • Brandi, S., Hohne, J., Muller, K. R., and Samek, W., “Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment,” in: Neural Engineering (NER), 7th International IEEE/EMBS Conference (2015), pp. 224–227.

  • Chaudhary, U. and Birbaumer, N., “Communication in locked-in state after brainstem stroke: a brain–computer-interface approach,” Ann. Transl. Med., 3, Supplement 1 (2015).

  • Deecke, L., Weinberg, H., and Brickett, P., “Magnetic fields of the human brain accompanying voluntary movement: Bereitschaftsmagnetfeld,” Exp. Brain Res., 48, No. 1, 144–148 (1982).

    Article  CAS  Google Scholar 

  • Fadiga, L., Caselli, L., Craighero, L., Gesierich, B., Oliynyk, A., Tia, B., and Viaro, R., “Activity in ventral premotor cortex is modulated by vision of own hand in action,” Peer J., 1, e88 (2013).

    Article  Google Scholar 

  • Gatti, R., Tettamanti, A., Gough, P. M., Riboldi, E., Marinoni, L., and Buccino, G., “Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study,” Neurosci. Lett., 540, 37–42 (2013).

    Article  CAS  Google Scholar 

  • Gonzalez-Rosa, J. J., Natali, E., Tettamanti, A., Cursi, M., Velikova, S., Comi, G., and Leocani, L., “Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis,” Behav. Brain Res., 281, 290–300 (2015).

    Article  Google Scholar 

  • Hallermann, S., de Kock, C. P., Stuart, G. J., and Kole, M. H., “State and location dependence of action potential metabolic cost in cortical pyramidal neurons,” Nat. Neurosci., 15, No. 7, 1007–1014 (2012).

  • Höller, Y., Bergmann, J., Kronbichler, M., Crone, J. S., Schmid, E. V., Thomschewski, A., and Trinka, E., “Real movement vs. motor imagery in healthy subjects,” Int. J. Psychophysiol., 87, No. 1, 35–41 (2013).

    Article  Google Scholar 

  • Jerbi, K., Combrisson, E., Dalal, S., Vidal, J., Hamme, C., Bertrand, O., and Lachaux, J. P., “Decoding cognitive states and motor intentions from intracranial EEG: How promising is high-frequency brain activity for brain-machine interfaces?,” Epilepsy Behav., 28, No. 2, 283–302 (2013).

    Article  Google Scholar 

  • Jongsma, M. L., Meulenbroek, R. G., Okely, J., Baas, C. M., van der Lubbe, R. H., and Steenbergen, B., “Effects of hand orientation on motor imagery-event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task,” PLoS One, 8, No. 9, e76515 (2013).

    Article  CAS  Google Scholar 

  • Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., and Cheyne, D., “Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings,” Neuroimage, 32, No. 3, 1281–1289 (2006).

    Article  Google Scholar 

  • Kang, H. J., Kim, D. H., Kim, B. M., Oh, D., and Jang, S. B., “Design and implementation of a three-dimensional game based on a brain–computer interface,” Int. J. Adv. Sci. Technol., 95, 73–88 (2016).

    Article  Google Scholar 

  • Keizer, A. W., Verment, R. S., and Hommel, B., “Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval,” Neuroimage, 49, 3404–3413 (2010).

    Article  Google Scholar 

  • Kiroy, V. N., Vladimirskii, B. M., Aslanyan, E. V., Bakhtin, O. M., and Minyaeva, N. R., “Electrographic correlates of actual and imagined movements: spectral analysis,” Neurosci. Behav. Physiol., 42, No. 1, 21–27 (2012).

    Article  Google Scholar 

  • Kiroy, V. N., Lazurenko, D. M., Shepelev, I. E., Minyaeva, N. R., Aslanyan, E. V., Bakhtin, O. M., and Vladimirskiy, B. M., “Changes in EEG spectral characteristics in the course of neurofeedback training,” Human Physiol., 41, No. 3, 269–279 (2015).

    Article  Google Scholar 

  • Kübler, A., Kleih, S., and Mattia, D., “Brain computer interfaces for cognitive rehabilitation after stroke,” in: Converging Clinical and Engineering Research on Neurorehabilitation II, Springer International Publishing (2017), pp. 847–852.

  • Longo, B., Castillo, J., and Bastos, T., “Brain–computer interface (BCI) combined with virtual reality environment (VRE) for inferior limbs rehabilitation in post-stroke subjects,” BMC Proc., 8, Supplement 4, 18 (2014).

    Article  Google Scholar 

  • Luu, T. P., He, Y., Brown, S., Nakagame, S. and Contreras-Vidal, J. L., “Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar,” J. Neural Eng., 13, No. 3, 036006 (2016).

    Article  Google Scholar 

  • Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D. W., and Ojemann, J. G., “Spectral changes in cortical surface potentials during motor movement,” J. Neurosci., 27, No. 9, 2424–2432 (2007).

    Article  CAS  Google Scholar 

  • Morash, V., Bai, O., Furlani, S., Lin, P., and Hallett, M., “Classifying EEG signals preceding right hand, left hand, tongue and right foot movements and motor imageries,” Clin. Neurophysiol., 119, No. 11, 2570–2578 (2008).

    Article  Google Scholar 

  • Muelling, K., Venkatraman, A., Valois, J. S., Downey, J. E., Weiss, J., Javdani, S., and Bagnell, J. A., “Autonomy infused teleoperation with application to brain computer interface controlled manipulation,” Autonomous Robots, 41, No. 6, 1401–1422 (2017).

    Article  Google Scholar 

  • Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G., “Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG,” Cogn. Brain Res., 25, No. 3, 668–677 (2005).

    Article  Google Scholar 

  • Neuper, C., Müller-Putz, G. R., Scherer, R., and Pfurtscheller, G., “Motor imagery and EEG-based control of spelling devices and neuroprostheses,” Progr. Brain Res., 159, 393–409 (2006).

    Article  Google Scholar 

  • Pfurtscheller, G., “Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery,” Clin. Neurophysiol., 53, Supplement, 196–198 (2000).

    CAS  Google Scholar 

  • Pfurtscheller, G., Solis-Escalante, T., Barry, R. J., Klobassa, D. S., Neuper, C., and Müller-Putz, G. R., “Brisk heart rate and EEG changes during execution and withholding of cue-paced foot motor imagery,” Front. Hum. Neurosci., 30, No. 7, 379 (2013), doi: https://doi.org/10.3389/fnhum. 00379.

  • Pockett, S., “Does consciousness cause behavior?,” J. Conscious. Stud., 11, No. 2, 23–40

  • Raffin, E., Mattout, J., Reilly, K. T., and Giraux, P., “Disentangling motor execution from motor imagery with the phantom limb,” Brain, 135, No. 2, 582–595 (2012).

    Article  Google Scholar 

  • Rea, M., Rana, M., Lugato, N., Terekhin, P., Gizzi, L., Briitz, D., and Caria, A., “Lower limb movement preparation in chronic stroke - a pilot study toward an fNIRS-BCI for gait rehabilitation,” Neurorehabil. Neural Repair, 28, No. 6, 564–575 (2014).

    Article  Google Scholar 

  • Saimpont, A., Lafleur, M. E., Malouin, E., Richards, C. L., and Doyon, J., “The comparison between motor imagery and verbal rehearsal on the learning of sequential movements,” Front. Hum. Neurosci., 7, 773 (2013), doi: https://doi.org/10.3389/fnhum.00773.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaoka, T., Mizuhara, H., and Inui, T., “Dynamic parieto-premotor network for mental image transformation revealed by simultaneous EEG and fMRI measurement,” J. Cogn. Neurosci., 26, No. 2, 232–246 (2014).

    Article  Google Scholar 

  • Savić, A., Lontis, R., Jiang, N., Popović, M., Farina, D., Dremstrup, K., and Mrachacz-Kersting, N., “Movement related cortical potentials and sensory motor rhythms during self initiated and cued movements,” in: Replace, Repair, Restore, Relieve-Bridging Clinical and Engineering Solutions in Neurorehabilitation, Springer International Publishing (2014), pp. 701–707

  • Schaffelhofer, S., Agudelo-Toro, A., and Scherberger, H., “Decoding a wide range of hand confi gurations from macaque motor, premotor and parietal cortices,” J. Neurosci., 35, No. 3, 1068–1081 (2015).

    Article  Google Scholar 

  • Schieber, M. H. and Hibbard, L. S., “How somatotopic is the motor cortex hand area?,” Science, 261, No. 5120, 489–492 (1993).

    Article  CAS  Google Scholar 

  • Sharma, N. and Baron, J. C., “Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis,” Front. Hum. Neurosci., 7, 564 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Shen, W., Da Silva, T. S., He, H., and Cline, K. T., “Type A GABAreceptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo,” J. Neurosci., 29, No. 15, 5032–5043 (2009).

  • Smith, M. M., Weaver, K. E., Grabowski, T. J., Rao, R. P., and Darvas, E., “Non-invasive detection of high gamma band activity during motor imagery,” Front. Hum. Neurosci., 8, 23 (2014).

    Google Scholar 

  • Sosnik, R., Flash, T., Sterkin, A., Hauptmann, B., and Karni, A., “The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains,” Front. Hum. Neurosci., 8, 201 (2014).

    Article  Google Scholar 

  • Staufenbiel, S. M., Brouwer, A. M., and Keizer, A. W., Van Wouten, N. C., “Effect of beta and gamma neurofeedback on memory and intelligence in the elderly,” Biol. Psychiatr., 95, 74–85 (2014).

  • Stepniewska, I., Gharbawie, O. A., Burish, M. J., and Kaas, J. H., “Effects of muscimol inactivations of functional domains in motor, premotor posterior parietal cortex on complex movements evoked by electrical stimulation,” J. Neurophysiol., 111, No. 5, 1100–1119 (2014).

    Article  CAS  Google Scholar 

  • Stoodley, C. J., Valera, E.M., and Schmahmann, J. D., “Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study,” Neuroimage, 59, No. 2, 1560–1570 (2012).

    Article  Google Scholar 

  • Sun, L., Yin, D., Zhu, Y., Fan, M., Zang, L., Wu, Y., and Hu, Y., “Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study,” Neuroradiology, 55, No. 7, 913–925 (2013).

    Article  Google Scholar 

  • Trimmel, M., Angewandte und experimentelle Neuropsychophysiologie, Springer-Verlag (2013).

  • Voon, V., Brezing, C., Gallea, C., and Hallett, M., “Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder,” Mov. Disord., 26, No. 13, 2396–2403 (2011).

    Article  Google Scholar 

  • Waldert, S., Pistohl, T., Braun, C., Bali, T., Aertsen, A., and Mehring, C., “A review on directional information in neural signals for brain-machine interfaces,” J. Physiol. (Paris), 103, No. 3, 244–254 (2009).

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M., “Brain–computer interfaces for communication and control,” Clin. Neurophysiol., 113, No. 6, 767–791 (2002).

    Article  Google Scholar 

  • Wyckoff, S. and Birbaumer, N., “Neurofeedback and brain–computer interfaces,” in: The Handbook of Behavioral Medicine (2014).

  • Yang, B. H., Wu, T., Wang, Q., and Han, Z. J., “Motor imagery EEG recognition based on WPD-CSP and KF-SVM in brain computer interfaces,” in: Applied Mechanics and Materials, 556, 2829–2833 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Lazurenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 4, pp. 430–444 July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazurenko, D.M., Kiroy, V.N., Aslanyan, E.V. et al. Electrographic Properties of Movement-Related Potentials. Neurosci Behav Physi 48, 1078–1087 (2018). https://doi.org/10.1007/s11055-018-0670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0670-9

Keywords

Navigation