Skip to main content
Log in

A Weakened Geomagnetic Field: Effects on Genomic Transcriptiln Activity, Learning, and Memory in Drosophila Melanogaster

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Neurodegenerative diseases result from a complex interaction between unfavorable environmental factors and the individual characteristics of the genome which predispose to disease development. Drosophila provides a suitable system for studies of the relationship between genomic organization and chromosomal architecture producing cognitive impairments. We present here the results of complex investigations of the effects of attenuation of the geomagnetic field (by screening) on genomic transcriptional activity, learning ability, and the formation of intermediate-term memory in Drosophila melanogaster. In this stress, a relationship was seen between modifications to transcriptional activity and the structure of the LIMK1 gene – a key enzyme in the actin remodeling cascade. Impairments to intermediate-term memory were seen on exposure to a weak static magnetic field in Canton-S wild-type flies. Conversely, this same stress restored learning ability and memory formation in agnts3 mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamburg, J. R. and Zheng, J. Q., “ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity,” Nat. Neurosci., 13, No. 10, 1208–1215 (2010).

    Article  Google Scholar 

  • Bamburg, J. R., Bernstein, B. W., Davis, R. C., et al., “ADF/Cofilin-actin rods in neurodegenerative diseases,” Curr. Alzheimer Res., 7, No. 3, 241–250 (2010).

    Article  CAS  Google Scholar 

  • Baranov, V. S., “Genomics on the pathway to predictive medicine,” Acta Naturae, 1, No. 3, 77–88 (2009).

    Google Scholar 

  • Cook, C. M., Saucier, D. M., Thomas, A. W., and Prato, F. S., “Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001–2005),” Bioelectromagnetics, 27, No. 8, 613–27 (2006).

    Article  CAS  Google Scholar 

  • Darieva, Z., Bulmer, R., Pic-Taylor, A., et al., “Polo kinase controls cellcycle-dependent transcription by targeting a coactivator protein,” Nature, 23, 494–498 (2006).

    Article  Google Scholar 

  • Davis, R. C., Marsden, I. T., Maloney, M. T., et al., “Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintainin cofilin phosphorylation,” Mol. Neurodegener., 6, 10 (2011).

    Article  CAS  Google Scholar 

  • Eberharter, A. and Becker, P. B., “Histone acetylation: a switch between repressive and permissive chromatin,” EMBO Rep., 3, 224–229 (2002).

    Article  CAS  Google Scholar 

  • Eckel, B., Fasquelle, L., Moulin, M., et al., “Knock down of heat shock protein 27 (HspBl) induces degradation of several putative client proteins,” PLoS One, 7, No. 1, 297–319 (2012).

    Google Scholar 

  • Friedman, M., Li, S., and Li, X.-J., “Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection,” J. Biol. Chem., 9, 27,944–27,951 (2009).

    Google Scholar 

  • George, V. T., Brooks, G., and Humphrey, T. C., “Regulation of cell cycle and stress responses to hydrostatic pressure in fission yeast,” Mol. Biol. Cell., 18, No. 10, 4168–4179 (2007).

    Article  CAS  Google Scholar 

  • Grigor’yan, G. A. and Gulyaeva, N. V., “Stress reactivity and stress resistance in the pathogenesis of depressive disorders: the role of epigenetic mechanisms,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 19–32 (2015).

    Google Scholar 

  • Kaminskaya, A. N., Nikitina, E. A., Payalina, T. L., et al., “Effects of the ratio of LIMK1 isoforms on mating behavior in Drosophila melanogaster: a complex approach,” Ekolog. Genetika, 9, No. 4, 3–14 (2011).

    Google Scholar 

  • Kamyishev, N. G., Iliadi, K. G., Bragina, Yu. V., et al., “Detection of Drosophila mutants with memory defects after acquisition of conditioned reflex mating suppression,” Ros. Fiziol. Zh., 85, No. 1, 84–92 (1999).

    Google Scholar 

  • Kamyshev, N. G., Iliadi, K. G., and Bragina, J. V., “Drosophila conditioned courtship: Two ways of testing memory,” Learn. Mem., 6, No. 1, 1–20 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor, P. and Shen, X., “Mechanisms of nuclear actin in chromatin remodeling complexes,” Trends Cell Biol., 24, No. 4, 238–246 (2014).

    Article  CAS  Google Scholar 

  • Kholodov, Yu. A. and Lebedeva, N. N., Reactions of the Nervous System to Electromagnetic Fields, Nauka, Moscow (1992).

    Google Scholar 

  • Kourmouli, N., Jeppesen R, Mahadevhaiah, S., et al., “Heterochromatin and tri-methylated lysine 20 of histone H4 in animals,” J. Cell Sci., 117, 2491–2501 (2004).

    Article  CAS  Google Scholar 

  • Kuznetsov, P. A., Farmakovskii, B. V., Askinazi, A. Yu., et al., Patent No. 2324989 RF, “A composite material for protection against electromagnetic irradiation” (2006).

  • Landry, C. D., Kandel, E. R., and Rajasethupathy, P., “New mechanisms in memory storage: piRNAs and epigenetics,” Trends Neurosci., 36, No. 9, 535–542 (2013).

    Article  CAS  Google Scholar 

  • Lednev, V. V., Belova, N. A., Ermakov, A. M., et al., “Regulation of heart rate variability in humans using extremely weak varying magnetic fields,” Biofizika, 53, 648–654 (2008).

    Google Scholar 

  • Li, J., Tan, M., Li, L., et al., “SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing,” Neoplasia, 7, No. 4, 312–323 (2005).

    Article  CAS  Google Scholar 

  • Maloney, M. T. and Bamburg, J. R., “Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies,” Mol. Neurobiol., 35, No. 1, 21–44 (2007).

    Article  CAS  Google Scholar 

  • Masliah, E., “The role of synaptic proteins in Alzheimer’s disease,” Ann. N. Y. Acad. Sci., 924, 68–75 (2000).

    Article  CAS  Google Scholar 

  • Medvedeva, A. V., Molotkov, D. A., Nikitina, E. A., et al., “A system regulating genetic and cytogenetic processes by the actin remodeling signal cascade: the agnostic locus of Drosophila,” Genetika, 44, No. 6, 669–681 (2008).

    CAS  Google Scholar 

  • Minamide, L. S., Striegl, A. M., Boyle, J. A., et al., “Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function,” Nat. Cell Biol., 2, 628–636 (2000).

    Article  CAS  Google Scholar 

  • Munsie, L., Caron, N., Atwal, R. S., et al., “Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease,” Hum. Mol. Genet., 20, No. 10, 1937–1951 (2011).

    Article  CAS  Google Scholar 

  • Nikitina, E. A., Medvedeva, A. V., Dolgaya, Yu. F., et al., “The contribution of nucleosome-free regions of the LIMK1 gene in the spatial organization of the nucleus in polymorphic variants of the agnostic locus in Drosophila – models of human genomic diseases,” in: Health – the Basis of Human Potential: Problems and Ways of Solving them (2013), Vol. 8, No. 2, pp. 97–982.

  • Rath, U., Ding, Y., Deng, H., et al., “The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes,” J. Cell Sci., 119, 2332–2341 (2006).

    Article  CAS  Google Scholar 

  • Rosso, S., Bollati, F., Bisbal, M., et al., “LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons,” Mol. Biol. Cell., 15, No. 7, 3433–3449 (2004).

    Article  CAS  Google Scholar 

  • Saito, A., Miyajima K, Akatsuka, J., et al., “CaMKIIβ-mediated LIMkinase activation plays a crucial role in BDNF-induced neuritogenesis,” Genes Cells, 18, No. 7, 533–543 (2013).

    Article  CAS  Google Scholar 

  • SantosRosa, H., Schneider, R., Bannister, A. J., et al., “Active genes are tri-methylated at K4 of histone H3,” Nature, 419, 407–411 (2002).

    Article  CAS  Google Scholar 

  • Savvateeva-Popova, E. V., Nikitina, E. A., Kurochkina, M. S., et al., “Actions of a weakened geomagnetic field as a factor regulating sexual behavior in Drosophila melanogaster,” in: Proc. 4th Int. Congress “Weak and Superweak Fields and Irradiation in Biology and Medicine” (2012).

  • Scott, R. W. and Oison, M. F., “LIM kinases: function, regulation and association with human disease,” J. Mol. Med., 85, 555–568 (2007).

    Article  CAS  Google Scholar 

  • Sjölinder, M., Bjork, P., Soderberg, E., et al., “The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes,” Genes Dev., 19, No. 16, 1871–1884 (2005).

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J., Biometry: The Principles and Practice of Statistics in Biological Research, W. H. Freeman, New York (1995).

    Google Scholar 

  • Stokin, G. B. and Goldstein, L. S., “Axonal transport and Alzheimer’s disease,” Annu. Rev. Biochem., 75, 607–627 (2006).

    Article  CAS  Google Scholar 

  • Swaminathan, J., Baxter, E., and Corces, V., “The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin,” Genes Dev., 19, 65–76 (2005).

    Article  CAS  Google Scholar 

  • Turner, B. M., “Cellular memory and the histone code,” Cell, 111, 285–291 (2002).

    Article  CAS  Google Scholar 

  • Vatolina, Yu. T., Boldyreva, L. V., Demakova, O. V., et al., “Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster,” PLoS One, 6, No. 10, 259–260 (2011).

    Article  Google Scholar 

  • Visa, N. and Percipalle, P. “Nuclear functions of actin,” Cold Spring Harb. Perspect. Biol., 2, No. 4, 620–634 (2010).

    Article  Google Scholar 

  • Vogel-Ciernia, A. and Wood, M. A., “Neuron-specific chromatin remodeling: A missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders,” Neuropharmacology, 80, 18–27 (2014).

    Article  CAS  Google Scholar 

  • World Health Organization, International Agency for Research on Cancer (IARC), “Non-ionizing radiation, Part I: static and extremely low-frequency (ELF) electric and magnetic fields,” IARC Monogr. Evaluat. Carcinog. Risks to Humans, 80, 1–395 (2002).

    Google Scholar 

  • Zakharov, G. A., Molecular Genetic Studies of the Role of the Components of the Actin Remodeling Signal Cascade in the Genesis of Behavioral Disorders in Drosophila Melanogaster: Auth. Abstr. Mast. Thesis in Biol. Sci., St. Petersburg (2012).

  • Zegerman, P., Canas, B., Pappin, D., and Kouzarides, T., “Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex,” J. Biol. Chem., 277, 11621–11624 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikitina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 2, pp. 246–256, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, E.A., Medvedeva, A.V., Gerasimenko, M.S. et al. A Weakened Geomagnetic Field: Effects on Genomic Transcriptiln Activity, Learning, and Memory in Drosophila Melanogaster. Neurosci Behav Physi 48, 796–803 (2018). https://doi.org/10.1007/s11055-018-0632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0632-2

Keywords

Navigation