A Weakened Geomagnetic Field: Effects on Genomic Transcriptiln Activity, Learning, and Memory in Drosophila Melanogaster

Neurodegenerative diseases result from a complex interaction between unfavorable environmental factors and the individual characteristics of the genome which predispose to disease development. Drosophila provides a suitable system for studies of the relationship between genomic organization and chromosomal architecture producing cognitive impairments. We present here the results of complex investigations of the effects of attenuation of the geomagnetic field (by screening) on genomic transcriptional activity, learning ability, and the formation of intermediate-term memory in Drosophila melanogaster. In this stress, a relationship was seen between modifications to transcriptional activity and the structure of the LIMK1 gene – a key enzyme in the actin remodeling cascade. Impairments to intermediate-term memory were seen on exposure to a weak static magnetic field in Canton-S wild-type flies. Conversely, this same stress restored learning ability and memory formation in agnts3 mutants.

This is a preview of subscription content, access via your institution.

References

  1. Bamburg, J. R. and Zheng, J. Q., “ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity,” Nat. Neurosci., 13, No. 10, 1208–1215 (2010).

    Article  Google Scholar 

  2. Bamburg, J. R., Bernstein, B. W., Davis, R. C., et al., “ADF/Cofilin-actin rods in neurodegenerative diseases,” Curr. Alzheimer Res., 7, No. 3, 241–250 (2010).

    CAS  Article  Google Scholar 

  3. Baranov, V. S., “Genomics on the pathway to predictive medicine,” Acta Naturae, 1, No. 3, 77–88 (2009).

    Google Scholar 

  4. Cook, C. M., Saucier, D. M., Thomas, A. W., and Prato, F. S., “Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001–2005),” Bioelectromagnetics, 27, No. 8, 613–27 (2006).

    CAS  Article  Google Scholar 

  5. Darieva, Z., Bulmer, R., Pic-Taylor, A., et al., “Polo kinase controls cellcycle-dependent transcription by targeting a coactivator protein,” Nature, 23, 494–498 (2006).

    Article  Google Scholar 

  6. Davis, R. C., Marsden, I. T., Maloney, M. T., et al., “Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintainin cofilin phosphorylation,” Mol. Neurodegener., 6, 10 (2011).

    CAS  Article  Google Scholar 

  7. Eberharter, A. and Becker, P. B., “Histone acetylation: a switch between repressive and permissive chromatin,” EMBO Rep., 3, 224–229 (2002).

    CAS  Article  Google Scholar 

  8. Eckel, B., Fasquelle, L., Moulin, M., et al., “Knock down of heat shock protein 27 (HspBl) induces degradation of several putative client proteins,” PLoS One, 7, No. 1, 297–319 (2012).

    Google Scholar 

  9. Friedman, M., Li, S., and Li, X.-J., “Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection,” J. Biol. Chem., 9, 27,944–27,951 (2009).

    Google Scholar 

  10. George, V. T., Brooks, G., and Humphrey, T. C., “Regulation of cell cycle and stress responses to hydrostatic pressure in fission yeast,” Mol. Biol. Cell., 18, No. 10, 4168–4179 (2007).

    CAS  Article  Google Scholar 

  11. Grigor’yan, G. A. and Gulyaeva, N. V., “Stress reactivity and stress resistance in the pathogenesis of depressive disorders: the role of epigenetic mechanisms,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 19–32 (2015).

    Google Scholar 

  12. Kaminskaya, A. N., Nikitina, E. A., Payalina, T. L., et al., “Effects of the ratio of LIMK1 isoforms on mating behavior in Drosophila melanogaster: a complex approach,” Ekolog. Genetika, 9, No. 4, 3–14 (2011).

    Google Scholar 

  13. Kamyishev, N. G., Iliadi, K. G., Bragina, Yu. V., et al., “Detection of Drosophila mutants with memory defects after acquisition of conditioned reflex mating suppression,” Ros. Fiziol. Zh., 85, No. 1, 84–92 (1999).

    Google Scholar 

  14. Kamyshev, N. G., Iliadi, K. G., and Bragina, J. V., “Drosophila conditioned courtship: Two ways of testing memory,” Learn. Mem., 6, No. 1, 1–20 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kapoor, P. and Shen, X., “Mechanisms of nuclear actin in chromatin remodeling complexes,” Trends Cell Biol., 24, No. 4, 238–246 (2014).

    CAS  Article  Google Scholar 

  16. Kholodov, Yu. A. and Lebedeva, N. N., Reactions of the Nervous System to Electromagnetic Fields, Nauka, Moscow (1992).

    Google Scholar 

  17. Kourmouli, N., Jeppesen R, Mahadevhaiah, S., et al., “Heterochromatin and tri-methylated lysine 20 of histone H4 in animals,” J. Cell Sci., 117, 2491–2501 (2004).

    CAS  Article  Google Scholar 

  18. Kuznetsov, P. A., Farmakovskii, B. V., Askinazi, A. Yu., et al., Patent No. 2324989 RF, “A composite material for protection against electromagnetic irradiation” (2006).

  19. Landry, C. D., Kandel, E. R., and Rajasethupathy, P., “New mechanisms in memory storage: piRNAs and epigenetics,” Trends Neurosci., 36, No. 9, 535–542 (2013).

    CAS  Article  Google Scholar 

  20. Lednev, V. V., Belova, N. A., Ermakov, A. M., et al., “Regulation of heart rate variability in humans using extremely weak varying magnetic fields,” Biofizika, 53, 648–654 (2008).

    Google Scholar 

  21. Li, J., Tan, M., Li, L., et al., “SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing,” Neoplasia, 7, No. 4, 312–323 (2005).

    CAS  Article  Google Scholar 

  22. Maloney, M. T. and Bamburg, J. R., “Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies,” Mol. Neurobiol., 35, No. 1, 21–44 (2007).

    CAS  Article  Google Scholar 

  23. Masliah, E., “The role of synaptic proteins in Alzheimer’s disease,” Ann. N. Y. Acad. Sci., 924, 68–75 (2000).

    CAS  Article  Google Scholar 

  24. Medvedeva, A. V., Molotkov, D. A., Nikitina, E. A., et al., “A system regulating genetic and cytogenetic processes by the actin remodeling signal cascade: the agnostic locus of Drosophila,” Genetika, 44, No. 6, 669–681 (2008).

    CAS  Google Scholar 

  25. Minamide, L. S., Striegl, A. M., Boyle, J. A., et al., “Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function,” Nat. Cell Biol., 2, 628–636 (2000).

    CAS  Article  Google Scholar 

  26. Munsie, L., Caron, N., Atwal, R. S., et al., “Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease,” Hum. Mol. Genet., 20, No. 10, 1937–1951 (2011).

    CAS  Article  Google Scholar 

  27. Nikitina, E. A., Medvedeva, A. V., Dolgaya, Yu. F., et al., “The contribution of nucleosome-free regions of the LIMK1 gene in the spatial organization of the nucleus in polymorphic variants of the agnostic locus in Drosophila – models of human genomic diseases,” in: Health – the Basis of Human Potential: Problems and Ways of Solving them (2013), Vol. 8, No. 2, pp. 97–982.

  28. Rath, U., Ding, Y., Deng, H., et al., “The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes,” J. Cell Sci., 119, 2332–2341 (2006).

    CAS  Article  Google Scholar 

  29. Rosso, S., Bollati, F., Bisbal, M., et al., “LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons,” Mol. Biol. Cell., 15, No. 7, 3433–3449 (2004).

    CAS  Article  Google Scholar 

  30. Saito, A., Miyajima K, Akatsuka, J., et al., “CaMKIIβ-mediated LIMkinase activation plays a crucial role in BDNF-induced neuritogenesis,” Genes Cells, 18, No. 7, 533–543 (2013).

    CAS  Article  Google Scholar 

  31. SantosRosa, H., Schneider, R., Bannister, A. J., et al., “Active genes are tri-methylated at K4 of histone H3,” Nature, 419, 407–411 (2002).

    CAS  Article  Google Scholar 

  32. Savvateeva-Popova, E. V., Nikitina, E. A., Kurochkina, M. S., et al., “Actions of a weakened geomagnetic field as a factor regulating sexual behavior in Drosophila melanogaster,” in: Proc. 4th Int. Congress “Weak and Superweak Fields and Irradiation in Biology and Medicine” (2012).

  33. Scott, R. W. and Oison, M. F., “LIM kinases: function, regulation and association with human disease,” J. Mol. Med., 85, 555–568 (2007).

    CAS  Article  Google Scholar 

  34. Sjölinder, M., Bjork, P., Soderberg, E., et al., “The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes,” Genes Dev., 19, No. 16, 1871–1884 (2005).

    Article  Google Scholar 

  35. Sokal, R. R. and Rohlf, F. J., Biometry: The Principles and Practice of Statistics in Biological Research, W. H. Freeman, New York (1995).

    Google Scholar 

  36. Stokin, G. B. and Goldstein, L. S., “Axonal transport and Alzheimer’s disease,” Annu. Rev. Biochem., 75, 607–627 (2006).

    CAS  Article  Google Scholar 

  37. Swaminathan, J., Baxter, E., and Corces, V., “The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin,” Genes Dev., 19, 65–76 (2005).

    CAS  Article  Google Scholar 

  38. Turner, B. M., “Cellular memory and the histone code,” Cell, 111, 285–291 (2002).

    CAS  Article  Google Scholar 

  39. Vatolina, Yu. T., Boldyreva, L. V., Demakova, O. V., et al., “Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster,” PLoS One, 6, No. 10, 259–260 (2011).

    Article  Google Scholar 

  40. Visa, N. and Percipalle, P. “Nuclear functions of actin,” Cold Spring Harb. Perspect. Biol., 2, No. 4, 620–634 (2010).

    Article  Google Scholar 

  41. Vogel-Ciernia, A. and Wood, M. A., “Neuron-specific chromatin remodeling: A missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders,” Neuropharmacology, 80, 18–27 (2014).

    CAS  Article  Google Scholar 

  42. World Health Organization, International Agency for Research on Cancer (IARC), “Non-ionizing radiation, Part I: static and extremely low-frequency (ELF) electric and magnetic fields,” IARC Monogr. Evaluat. Carcinog. Risks to Humans, 80, 1–395 (2002).

    Google Scholar 

  43. Zakharov, G. A., Molecular Genetic Studies of the Role of the Components of the Actin Remodeling Signal Cascade in the Genesis of Behavioral Disorders in Drosophila Melanogaster: Auth. Abstr. Mast. Thesis in Biol. Sci., St. Petersburg (2012).

  44. Zegerman, P., Canas, B., Pappin, D., and Kouzarides, T., “Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex,” J. Biol. Chem., 277, 11621–11624 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikitina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 2, pp. 246–256, March–April, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitina, E.A., Medvedeva, A.V., Gerasimenko, M.S. et al. A Weakened Geomagnetic Field: Effects on Genomic Transcriptiln Activity, Learning, and Memory in Drosophila Melanogaster. Neurosci Behav Physi 48, 796–803 (2018). https://doi.org/10.1007/s11055-018-0632-2

Download citation

Keywords

  • Drosophila
  • weak static magnetic field
  • neurodegenerative diseases
  • learning and memory
  • histone acetylation