Skip to main content

Advertisement

Log in

Effects of Indigenous Enterococci on the Intestinal Microbiota and the Behavior of Rats on Correction of Experimental Dysbiosis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Autoprobiotic (indigenous) strains of Enterococcus faecium used in the correction of experimental intestinal dysbiosis, in contrast to probiotic E. faecium strain L-3, had a marked bifidogenic effect, preserved the populations of Escherichia, and inhibited the growth of Proteus, but had a relatively low antagonistic activity in relation to Klebsiella. Administration of autoprobiotics (A) and probiotic (P) led to faster disappearance of the symptoms of dyspepsia as compared with the control group of rats (C1) in which dysbiosis was not corrected. Animals from subgroup A1 were given A, whose genomes contained a large number of pathogenicity genes, including cytolysins and hyaluronidase. Investigations using the open field test identified various behavioral reactions to correction of dysbiosis. Animals of subgroup A1 showed suppression of movement and orientational-investigative activity. In the second group of rats (subgroup A2), movement and orientational-investigative activity was comparable with that in control group C2 (without induction of dysbiosis), as after use of P. These characteristics of the effects of autoprobiotic enterococci on the intestinal microbiota and the body support the existence of an intestinal microbiome–brain axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Abdurasulova, A. F. Safonova, V. V. Sizov, et al., “Comparison of the actions of different probiotics on the motor and orientational-exploratory activity in rats,” in: Proc. 10th All-Russ. Sci. Appl. Conf. (2015), Vol 10, Pt. 1, pp. 1047–1051.

  2. I. N. Abdurasulova, E. A. Tarasova, E. I. Ermolenko, et al., “Multiple sclerosis involves changes in the qualitative and quantitative composition of the intestinal microbiota,” Med. Akad. Zh., 15, No. 3, 55–67 (2015).

    Google Scholar 

  3. O. V. Averina, A. Yu. Ratushnyi, E. A. Tarasova, et al., “Effects of probiotics on cytokine production in in vitro and in vivo systems,” Med. Immunol., 17, No. 5, 443–454 (2015).

    Article  Google Scholar 

  4. V. M. Bondarenko and A. A. Vorob’ev, “Dysbiosis and preparations with probiotic functions,” Zh. Mikrobiol., No. 1, 84–92 (2004).

  5. A. E. Vershinin, V. V. Kolodzhieva, E. I. Ermolenko, et al., “Genetic identification as a method for identifying pathogenic and symbiotic strains of enterococci,” Zh. Mikrobiol., No. 5, 83–87 (2008).

  6. L. M. Gunina, “Mechanisms of the effects of the probiotic ‘Laminolact Sportive’ on measures of specialist training of expert sportsmen,” in: Pedagogics, Psychology, and Medical-Biological Problems of Physical Nourishment and Sport (2012), Vol. 4, pp. 36–43.

  7. I. V. Darmov, I. Yu. Chicherin, I. P. Pogorel’skii, et al., “Survival of probiotic microorganisms in the gastrointestinal tract of experimental animals,” Zh. Infektol., 4, No. 1, 68–74 (2012).

    Google Scholar 

  8. E. I. Ermolenko, Lactobacilli, Lambert Academic Publishing (2011).

  9. E. I. Ermolenko, V. N. Donets, Yu. V. Dmitrieva, et al., “Effects of probiotic enterococci on the functional characteristics of the intestine in rats with antibiotic-induced dysbiosis,” Vestn. St. Peter. Univ. Med. Ser., 11, No. 1, 157–167 (2009).

    Google Scholar 

  10. E. I. Ermolenko, D. A. Seirido, M. L. Kotyleva, et al., “Correction of intestinal dysbiosis in rats with indigenous recombinant strains of enterococci and the duration of their persistence in the intestinal microbiocenosis,” Eksperim. Klin. Gastroenterol., 12, 10–25 (2016).

    Google Scholar 

  11. V. K. Il’in, A. N. Suvorov, N. V. Kiryukhina, et al., “Autoprobiotics for the prophylaxis of infectious-inflammatory diseases in humans in an artificial habitat,” Vestn. Ros. Akad. Med. Nauk., No. 2, 56–62 (2013).

  12. M. A. Kirilenko and O. Yu. Kuznetsov, “Creation of an autoprobiotic formulation containing an active complex of bifidobacteria and lactobacteria,” Mezhdunar. Nauch.-Issl. Zh., 10, No. 41, 61–62 (2015).

    Google Scholar 

  13. E. I. Krasnova, N. I. Choklova, A. V. Vasinin, and I. A. Tsvetkova, “Acute intestinal infections: current aspects of the etiopathogenesis and the place of probiotics in treatment,” Pediatriya, No. 3, 80–84 (2015).

  14. V. M. L’nyavina, Yu. P. Uspenskii, G. A. Alekhina, and A. N. Suvorov, “Use of probiotics as a factor in the correction of lipid metabolism in ischemic heart disease,” in: Innovatory Technologies for Controlling Health and Longevity in Humans: Proc. 1st Int. Sci. Appl. Conf., St. Petersburg (2010), pp. 24–28.

  15. V. I. Simanenkhov, A. N. Suvorov, O. I. Solov’eva, et al., Patent 2546253 RF, “A means of obtaining a personalized autoprobiotic product and a means of treating irritable bowel syndrome using this product,” subm. April 25, 2013, reg. in RF State Register of Inventions March 2, 2015.

  16. A. P. Khachatryan and R. G. Khachatryan, Patent 2126043 RF, C12N1/10, A61 35/74, “A means of obtaining a bank of autostrains of microorganisms for restoring the intestinal microbiocenosis in humans,” subm. Feb. 10, 1999.

  17. P. V. Seliverstov, V. G. Radchenko, I. G. Safronenkova, and S. I. Sitkin, “Interaction of the liver and intestine on the background of imbalance in the large intestinal microflora,” Gastroenterol. St-Peter., No. 2–3, 15–18 (2010).

  18. B. A. Shenderov and M. A. Manvelova, Auth. Certif. No. 1286212 USSR, A 61 K 35/74, “A means of obtaining an autoprobiotic containing live bifidobacteria and lactobacilli,” subm. Jan. 30, 1987.

  19. I. Yu. Chicherin, I. P. Pogorel’skii, I. A. Lundovskikh, et al., “Autoprobiotic therapy,” Zh. Infektol., 5, No. 4, 43–54 (2013).

    Google Scholar 

  20. E. Barrett, R. P. Ross, P. W. O’Toole, et al., “Gamma-aminobutyric acid production by culturable bacteria from the human intestine,” J. Appl. Microbiol., 113, No. 2, 411–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. P. Bercik, E. F. Verdu, J. A. Foster, et al., “Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice,” Gastroenterology, 139, No. 6, 2102–2112 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. P. Bercik, E. Denou, J. Collins, et al., “The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice,” Gastroenterology, 141, No. 2, 599–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. P. Bercik, A. J. Park, D. Sinclair, et al., “The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gutbrain communication,” Neurogastroenterol. Motil., 23, No. 12, 1132–1139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. A. Bravo, P. Forsythe, M. V. Chew, et al., “Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve,” Proc. Natl. Acad. Sci. USA, 108, No. 38, 16050–16055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. F. Brouns and E. Beckers, “Is the gut an athletic organ? Digestion, absorption and exercise,” Sports Med., 15, No. 4, 242–257 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. S. M. Collins, M. Surette, and P. Bercik, “The interplay between the intestinal microbiota and the brain,” Nat. Rev. Microbiol., 10, No. 11, 735–742 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. S. Davari, S. A. Talaei, H. Alaei, and M. Salami, “Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis,” Neuroscience, 240, 287–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. E. Ermolenko, L. Gromova, Yu. Borschev, et al., “Influence of different probiotic lactic acid bacteria on microbiota and metabolism of rats with dysbiosis,” Biosci. Microbiota Food Health, 32, No. 2, 41–49 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. S. M. Finegold, S. E. Dowd, V. Gontcharova, et al., “Pyrosequencing study of fecal microflora of autistic and control children,” Anaerobe, 16, No. 4, 444–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. M. G. Gareau, E. Wine, D. M. Rodrigues, et al., “Bacterial infection causes stress-induced memory dysfunction in mice,” Gut, 60, No. 3, 307–317 (2011).

    Article  PubMed  Google Scholar 

  31. R. D. Heijtz, S. Wang, F. Anuar, et al., “Normal gut microbiota modulates brain development and behavior,” Proc. Natl. Acad. Sci. USA, 108, No. 7, 3047–3052 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  32. C. Jernberg, S. Lofmark, C. Edlund, and J. K. Jansson, “Long-term impacts of antibiotic exposure on the human intestinal microbiota,” Microbiology, 156, No. 11, 3216–3223 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. H. Jiang, Z. Ling, Y. Zhang, et al., “Altered fecal microbiota composition in patients with major depressive disorder,” Brain Behav. Immun., 48, 186–194 (2015).

    Article  PubMed  Google Scholar 

  34. A. Karaseva, A. Tsapieva, J. Pachebat, and A. Suvorov, “Draft genome sequence of probiotic Enterococcus faecium strain L-3,” Genome Announc., 4, No. 1, e01622-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. L. V. McFarland, “Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review,” BMJ Open, 4, No. 8, e005047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Messaoudi, R. Lalonde, N. Violle, et al., “Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects,” Brit. J. Nutr., 105, No. 5, 755–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. M. I. Naseer, F. Bibi, M. H. Alqahtani, et al., “Role of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease,” CNS Neurol. Disord. Drug Targets, 13, No. 2, 305–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. W. Ochmański and W. Barabasz, “Probiotics and their therapeutic properties at sportsmen,” Rev. Przegl. Lek., 56, No. 3, 211–215 (1999).

    Google Scholar 

  39. I. Sekirov, S. L. Russell, L. C. Antunes, and B. B. Finlay, “Gut microbiota in health and disease,” Physiol. Rev., 90, No. 3, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. A. Suvorov, “Gut microbiota, probiotics, and human health,” Biosci. Microbiota Food Health, 32, No. 3, 81–91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. E. Tarasova, E. Yermolenko, V. Donets, et al., “The influence of probiotic enterococci on the microbiota and cytokines expression in rats with dysbiosis induced by antibiotics,” Benef. Microbes, 1, No. 3, 265–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. K. Tillisch, J. Labus, L. Kilpatrick, et al., “Consumption of fermented milk product with probiotic modulates brain activity,” Gastroenterology, 144, No. 7, 1394–1401 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. H. A. Tilson and C. L. Mitchell, “Neurobehavioral techniques to assess the effects of chemicals on the nervous system,” Annu. Rev. Pharmacol. Toxicol., 24, 425–450 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. B. L. Williams, M. Hornig, T. Parekh, and W. I. Lipkin, “Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances,” Mbio, 3, No. 1 (2012), pii: e00261-11, doi: https://doi.org/10.1128/mBio.00261-11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ermolenko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 1, pp. 22–37, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolenko, E.I., Abdurasulova, I.N., Kotyleva, M.P. et al. Effects of Indigenous Enterococci on the Intestinal Microbiota and the Behavior of Rats on Correction of Experimental Dysbiosis. Neurosci Behav Physi 48, 496–505 (2018). https://doi.org/10.1007/s11055-018-0591-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0591-7

Keywords

Navigation