Skip to main content
Log in

Experience in Continuous Neurobiocontrol Using fMRI Signals from the Primary Motor Cortex Using a 1.5-T MR Tomograph

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Biocontrol based on fMRI signals from the motor area of the cortex is a potential approach to restoring motor functions in poststroke states and Parkinson’s disease. The region of interest in most studies is in the secondary motor areas and the strength of the magnetic field is 3 T. We report here our studies on biocontrol using the fMRI signal from an area of the primary motor cortex associated with the operation of the right hand obtained using a 1.5-T tomograph and settings optimal for obtaining optimal images at this magnetic field strength. Subjects were 16 healthy subjects who took part in 30-min fMRI recording including 1) individual localization of the region of interest (rhythmic fist clenching test) and attempts to control its activity using 2) imaginary movements and 3) any cognitive strategy of the participant’s choice. Attempts to carry out self-control in both cases led to activation of the precentral, anterior cingulate, superior frontal, and inferior parietal gyri and Brodmann zone 6. fMRI signal maps for these tasks did not show any statistically significant differences and the activation zones showed little if any overlap with the region of interest, evidencing lack of success of sessions. The limitations of the experiments are discussed, as are factors with adverse influences on the effectiveness of biocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman, B. D., Horovitz, S. G., Venkataraman, G., and Hallett M., “Self-modulation of primary motor cortex activity with motor and motor imagery tasks using realtime fMRI-based neurofeedback,” Neuroimage, 59, 917–925 (2012).

    Article  PubMed  Google Scholar 

  • Boldyreva, G. N., Sharova, E. V., Zhavoronkova, L. A., et al., “Structural-functional characteristics of brain operation on execution and imagination of motor loads in healthy people (EEG and fMRI investigations),” Zh. Vyssh. Nerv. Deyat., 63, 316–327 (2013).

    CAS  Google Scholar 

  • Bruhl, A. B., “Making sense of real-time functional magnetic resonance imaging (rtfMRI) and rtfMRI neurofeedback,” Int. J. Neuropsychopharmacol., 18, 20 (2015).

    Article  Google Scholar 

  • Caldara, R., Deiber, M.-P., Andrey, C., et al., “Actual and mental motor preparation and execution: a spatiotemporal ERP study,” Exp. Brain Res., 159, 389–399 (2004).

    Article  PubMed  Google Scholar 

  • Cavanna, A. E. and Trimble, M. R., “The precuneus: a review of its functional anatomy and behavioural correlates,” Brain, 129, No. 3, 564–583 (2006).

    Article  PubMed  Google Scholar 

  • Culham, J. C., Cavina-Pratesi, C., and Singhal, A., “The role of parietal cortex in visuomotor control: What have we learned from neuroimaging?” Neuropsychologia, 44, 2668–2684 (2006).

    Article  PubMed  Google Scholar 

  • Grefkes, C., Ritzl, A., Zilles, K., and Fink, G. R., “Human medial intraparietal cortex subserves visuomotor coordinate transformation,” NeuroImage, 23, 1494–1506 (2004).

    Article  PubMed  Google Scholar 

  • Hampson, M., Scheinost, D., Qiu, M., et al., “Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions,” Brain Connect., 1, 91–98 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Holper, L., Muehlemann, T., Scholkmann, F., et al., “Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional nearinfrared spectroscopy (fNIRS),” J. Neuroeng. Rehabil., 7, 57 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. A., Hartwell, K., LeMatty, T., et al., “Intermittent ‘real-time’ fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study,” J. Neuroimaging, 22, 58–66 (2012).

    Article  PubMed  Google Scholar 

  • Kim, S. and Birbaumer N., “Real-time functional MRI neurofeedback: a tool for psychiatry,” Curr. Opin. Psychiatry, 27, 332–336 (2014).

    Article  PubMed  Google Scholar 

  • Mihara, M., Hattori, N., Hatakenaka, M., et al., “Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims,” Stroke, 44, 1091–1098 (2013).

    Article  PubMed  Google Scholar 

  • Scharnowski, F., Veit, R., Zopf, R., et al., “Manipulating motor performance and memory through real-time fMRI neurofeedback,” Biol. Psychol., 108, 85–97 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster, C., Hilfiker, R., Amfi, O., et al., “Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines,” BMC Medicine, 9, 75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoeckel, L. E., Garrison, K. A., Ghosh, S. S., et al., “Optimizing real time fMRI neurofeedback for therapeutic discovery and development,” Neuroimage Clin., 5, 245–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian, L., Hindle, J. V., Johnston, S., et al., “Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease,” J. Neurosci., 31, 16,309–16,317 (2011).

    Google Scholar 

  • Sulzer, J., Haller, S., Schamowski, F., et al., “Real-time fMRI neurofeedback: Progress and challenges,” NeuroImage, 76, 386–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Yin, D., Zhu, Y., et al., “Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study,” Neuroradiology, 55, 913–925 (2013).

    Article  PubMed  Google Scholar 

  • Talati, A. and Hirsch, J., “Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on ‘what,’ ‘when,’ and “where” related information: an fMRI study,” J. Cogn. Neurosci., 17, 981–993 (2005).

    Article  PubMed  Google Scholar 

  • Tanaka, S., Honda, M., and Sadato, N., “Modality-specific cognitive function of medial and lateral human Brodmann area 6,” J. Neurosci., 25, No. 2, 496–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Weiskopf, N., Mathiak, K., Bock, S. W., et al., “Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI),” IEEE Trans. Bio-Med. Eng., 51, 966–970 (2004).

    Article  Google Scholar 

  • Yoo, S. S., Lee, J. H., O’Leary, H., et al., “Neurofeedback fMRI mediated learning and consolidation of regional brain activation during motor imagery,” Int. J. Imag. Syst. Technol., 18, 69–78 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Mel’nikov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 1, pp. 83–92, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mel’nikov, M.E., Savelov, A.A., Shtark, M.B. et al. Experience in Continuous Neurobiocontrol Using fMRI Signals from the Primary Motor Cortex Using a 1.5-T MR Tomograph. Neurosci Behav Physi 48, 474–482 (2018). https://doi.org/10.1007/s11055-018-0588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0588-2

Keywords

Navigation