Neuroscience and Behavioral Physiology

, Volume 47, Issue 8, pp 976–986 | Cite as

Delayed Copying of Unfamiliar Outline Images: Analysis of Stimulus Presentation-Related Potentials

  • A. A. Korneev
  • D. I. Lomakin
  • A. V. Kurganskii
  • R. I. Machinskaya

High-density EEG recordings were made during performance of tasks consisting of delayed motor reproduction of unfamiliar trajectory outline images, with evaluation of event-related potentials (ERP) associated with presentation of these images and a command sound signal (a short sound). A total of 22 right-handed adult subjects took part in the study, which consisted of five blocks of trials with different delays T between the command sound signal and the end of presentation of trajectory outlines (T = 0, 500, 1000, 2000, and 4000 msec). analysis of ERP showed that in contrast to potentials associated with trajectory outline presentation, potentials linked with presentation of the command signals depended on delay duration T. Analysis of the cortical sources of these potentials showed that the changes seen in the sensor space corresponded to a marked monotonic increase in the reactivity of the orbital cortex of the right hemisphere and bilaterally symmetrical increases in the reactivity of the dorsal areas of the sensorimotor cortex. These data are assessed in the framework of the hypothesis of transformations of the internal representation of the trajectory from a sensory-specific format to an abstract sensory- and motor-nonspecific format occurring during the period of holding in working memory.


working memory internal representation outline images motor sequences high-density EEG event-linked potentials (ERP) cortical sources 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamse, E. L., Ruitenberg, M. E., de Kleine, E., and Verwey, W. B., “Control of automated behavior: insights from the discrete sequence production task,” Front. Hum. Neurosci., 19, 7–82 (2013).Google Scholar
  2. Ashe, J., Taira, M., Smymis, N., et al., “Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend,” Exp. Brain Res., 95, No. 1, 118–130 (1993).CrossRefPubMedGoogle Scholar
  3. Bar, M., Kassam, K. S., Ghuman, A. S., et al., “Top-down facilitation of visual recognition,” Proc. Natl. Acad. Sci. USA, 103, No. 2, 449–454 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbey, A. K., Koenigs, M., and Grafman, J., “Orbitofrontal contributions to human working memory,” Cereb. Cortex, 21, No. 4, 789–795 (2011).CrossRefPubMedGoogle Scholar
  5. Bastian, A., Schöner, G., and Riehle, A., “Preshaping and continuous evolution of motor cortical representations during movement preparation,” Eur. J. Neurosci., 18, No. 7, 2047–2058 (2003).CrossRefPubMedGoogle Scholar
  6. Bays, P. M., Gorgoraptis, N., Wee, N., et al., “Temporal dynamics of encoding, storage, and reallocation of visual working memory,” J. Vis., 11, No. 10 (2011).CrossRefGoogle Scholar
  7. Darvas, E., Pantazis, D., Kucukaltun-Yildirim, E., and Leahy, R. M., “Mapping human brain function with MEG and EEG: methods and validation,” Neuroimage, 23, Suppl. 1, S289–99 (2004).CrossRefPubMedGoogle Scholar
  8. deCharms, R. C. and Zador, A., “Neural representation and the cortical code,” Annu. Rev. Neurosci., 23, 613–647 (2000).CrossRefPubMedGoogle Scholar
  9. Eggermont, J. J., “Is there a neural code?” Neurosci. Biobehav. Rev., 22, No. 2, 355–370 (1998).CrossRefPubMedGoogle Scholar
  10. Gallese, V., “Motor abstraction: a neuroscientific account of how action goals and intentions are mapped and understood,” Psychol. Res., 73, No. 4, 486–498 (2009).CrossRefPubMedGoogle Scholar
  11. Glover, S., “Separate visual representations in the planning and control of action,” Behav. Brain Sci., 27, No. 1, 3–24, 24–78 (discussion) (2004).Google Scholar
  12. Grech, R., Cassar, T., Muscat, J., et al., “Review on solving the inverse problem in EEG source analysis,” J. Neuroeng. Rehabil., 5, 25 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haliez, H., Vanrumste, B., Grech, R., et al., “Review on solving the forward problem in EEG source analysis,” J. Neuroeng. Rehabil., 14, 46 (2007).CrossRefGoogle Scholar
  14. Hegdé, J. and van Essen, D. C., “A comparative study of shape representation in macaque visual areas v2 and v4,” Cereb. Cortex, 17, No. 5, 1100–1116 (2007).CrossRefPubMedGoogle Scholar
  15. Hiramatsu, C., Goda, N., and Komatsu, H., “Transformation from image-based to perceptual representation of materials along the human ventral visual pathway,” Neuroimage, 57, No. 2, 482–494 (2011).CrossRefPubMedGoogle Scholar
  16. Hurlstone, M. J., Hitch, G. J., and Baddeley, A. D., “Memory for serial order across domains: An overview of the literature and directions for future research,” Psychol. Bull., 140, No. 2, 339–73 (2014).CrossRefPubMedGoogle Scholar
  17. Kayaert, G., Wagemans, J., and Vogels, R., “Encoding of complexity, shape, and curvature by macaque infero-temporal neurons,” Front. Syst. Neurosci., 5, 51 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  18. Korneev, A. A. and Kurganskii, A. V., “Effects of the means of visual presentation of a complex trajectory on the time parameters of its delayed motor reproduction,” Psikhol. Issled., No. 7, 37 (2014a).Google Scholar
  19. Korneev, A. A. and Kurganskii, A. V., “Internal representations of a series of movements on reproduction of a static diagram and the trajectory of a moving object,” Zh. Vyssh. Nerv. Deyat., 63, No. 4, 437–450 (2013).Google Scholar
  20. Korneev, A. A. and Kurganskii, A. V., “Transformation of the order of movements in a series specified by a visual image,” Vestn. Mosk. Univ. Ser 14. Psikhol., No. 2, 61–74 (2014b).Google Scholar
  21. Korneev, A. A., Lomaskin, D. I., and Kurganskii, A. V., “Delayed copying of unfamiliar outline images: does the decrease in reaction time with increases in delay reflect changes in the internal representation of the future movement?” Zh. Vyssh. Nerv. Deyat., 66, 51–61 (2016).Google Scholar
  22. Kovacs, A. J., Boyle, J., Grutmatcher, N., and Shea, C. H., “Coding of online and pre-planned movement sequences,” Acta Psychol. (Amst)., 133, No. 2, 119–126 (2010).CrossRefPubMedGoogle Scholar
  23. Langner, R., Sternkopf, M. A., Kellermann, T. S., et al., “Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences,” Hum. Brain Mapp., 35, No. 7, 3465–3484 (2014).CrossRefPubMedGoogle Scholar
  24. Liao, D. A., Kronemer, S. I., Yau, J. M., et al., “Motor system contributions to verbal and non-verbal working memory,” Front. Hum. Neurosci., 8, 753 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  25. Litvak, V., Mattout, J., Kiebel, S., et al., “EEG and MEG data analysis in SPM8,” Comput. Intell. Neurosci., 2011, 852961 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  26. Niemi, P. and Näätänen, R., “Foreperiod and simple reaction time,” Psychol. Bull., 89, No. 1, 133–162 (1981).CrossRefGoogle Scholar
  27. Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., et al., “Assessing interactions in the brain with exact low-resolution electromagnetic tomography,” Philos. Trans. A. Math. Phys. Eng. Sci., 369, No. 1952, 3768–3784 (2011).CrossRefPubMedGoogle Scholar
  28. Schmidt, R. A., “Motor schema theory after 27 years: reflections and implications for a new theory,” Res. Q. Exerc. Sport, 74, No. 4, 366–375 (2003).CrossRefPubMedGoogle Scholar
  29. Tatler B. W., Gilchrist, I. D., and Rusted, J., “The time course of abstract visual representation,” Perception, 32, No. 5, 579–592 (2003).CrossRefPubMedGoogle Scholar
  30. Ungerleider, L. G. and Haxby, J. V., “’What’ and ‘where’ in the human brain,” Curr. Opin. Neurobiol., 4, No. 2, 157–165 (1994).CrossRefPubMedGoogle Scholar
  31. Wiestler, T., Waters-Metenier, S., and Diedrichsen, J., “Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames,” J. Neurosci., 34, No. 14, 5054–5064 (2014).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • A. A. Korneev
    • 1
    • 2
  • D. I. Lomakin
    • 1
    • 2
  • A. V. Kurganskii
    • 2
  • R. I. Machinskaya
    • 2
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Developmental PhysiologyRussian Academy of EducationMoscowRussia

Personalised recommendations