Neuroscience and Behavioral Physiology

, Volume 47, Issue 8, pp 936–940 | Cite as

Permeability of the Dura Mater of the Spinal Cord in Dogs for Low Molecular Weight Substances in Serum

  • M. V. Stogov
  • T. A. Silant’eva
  • V. V. Krasnov
  • N. V. Kubrak

The permeability of the dura mater (DM) of the dog spinal cord for low molecular weight serum components – urea, creatinine, glucose, lactate, cholesterol, calcium, and inorganic phosphate – was studied in in vitro conditions. DM permeability for a high molecular weight serum component – albumin – was assessed as a reference compound. Most of the study components had permeabilities of 8–15%. The greatest DM permeability was for lactate (33.6%) and the lowest was for cholesterol (1.3%). Values for urea and creatinine were 8.0 and 7.5%, respectively; there was a nonlinear relationship between permeability and the initial substrate concentration in the serum. The DM permeability threshold for urea was 4.83 mM and that for creatinine was 97 μM. The functional characteristics of DM permeability may be determined by its structural features – dense packing of fibrillar connective tissues structures, high content of sulfated and the absence of nonsulfated glycosaminoglycans.


dura mater of the spinal cord permeability low molecular weight compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Severin (ed.), Biochemistry: Textbook, GEOTAR-Media, Moscow (2003).Google Scholar
  2. 2.
    V. N. Kanyukov, A. A. Stadnikov, O. M. Trubina, et al., “Experimental histological aspects of studies of donor material conserved in vacuo,” Vestn. OGU, No. 12, 66–68 (2008).Google Scholar
  3. 3.
    E. V. Karyakina and S. V. Belova, “Intermediate molecular weight molecules as an integral measure of metabolic impairments,” Klin. Lab. Diagnost., No. 3, 3–8 (2004).Google Scholar
  4. 4.
    D. S. Sarkisov and Yu. L. Perov (eds.), Microscopy Techniques: Guidelines for Doctors and Laboratory Staff, Meditsina, Moscow (1996).Google Scholar
  5. 5.
    T. A. Silant’eva, E. N. Gorbach, Yu. M. Ir’yanov, et al., Russian Patent No. 2397472, “A means of preparing samples of biological tissues for scanning electron microscopic examination,” Byull. Izobret., Polezn. Modeli, No. 23, pp. 1–5 (2008).Google Scholar
  6. 6.
    N. J. Abbott, A. A. Patabendige, D. E. Dolman, et al., “Structure and function of the blood-brain barrier,” Neurobiol. Dis., 37, No. 1, 13–25 (2010).CrossRefPubMedGoogle Scholar
  7. 7.
    C. M. Bernards, “Sophistry in medicine: lessons from the epidural space,” Reg. Anesth, Pain Med., 30, No. 1, 56–66 (2005).Google Scholar
  8. 8.
    C. M. Bernards and H. F. Hill, “Morphine and alfentanil permeability through the spinal dura, arachnoid, and pia mater of dogs and monkeys,” Anesthesiology, 73, No. 6, 1214–1219 (1990).CrossRefPubMedGoogle Scholar
  9. 9.
    C. M. Bernards, D. D. Shen, E. S. Sterling, et al., “Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opioids (part 2), effect of epinephrine,” Anesthesiology, 99, No. 2, 466–475 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    R. Clement, J. M. Malinovsky, P. Le Corre, et al., “Cerebrospinal fluid bioavailability and pharmacokinetics of bupivacaine and lidocaine after intrathecal and epidural administrations in rabbits using microdialysis,” Pharmacol. Exp. Ther., 289, No. 2, 1015–1021 (1999).Google Scholar
  11. 11.
    J. C. Crews, “New developments in epidural anesthesia and analgesia,” Anesthesiol. Clin. North Am., 18, No. 2, 251–266 (2000).CrossRefGoogle Scholar
  12. 12.
    K. Kandere-Grzybowska, D. Gheorghe, J. Priller, et al., “Stressinduced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice,” Brain Res., 980, No. 2, 213–220 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Kapitulnik, “Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties,” Mol. Pharmacol., 66, No. 4, 773–779 (2004).CrossRefPubMedGoogle Scholar
  14. 14.
    G. Nikezie, A. Horvat, N. Nedeljkovie, et al., “Influence of pyridine and urea on the rat brain ATPase activity,” Gen. Physiol. Biophys., 17, No. 1, 15–23 (1998).Google Scholar
  15. 15.
    D. A. Party, M. H. Flint, G. C. Gillard, and A. S. Craig, “A role for glycosaminoglycans in the development of collagen fibrils,” FEBS Lett., 149, No. 1, 1–7 (1982).CrossRefGoogle Scholar
  16. 16.
    D. J. Patin, E. C. Eckstein, K. Harum, and V. S. Pallares, “Anatomic and biomechanical properties of human lumbar dura mater,” Anesth. Analg., 76, No. 3, 535–540 (1993).CrossRefPubMedGoogle Scholar
  17. 17.
    C. Persson, S. Evans, R. Marsh, et al., “Poisson’ s ratio and strain rate dependency of the constitutive behavior of spinal dura mater,” Ann. Biomed. Eng., 38, No. 3, 975–983 (2010).CrossRefPubMedGoogle Scholar
  18. 18.
    J. E. Preston, N. J. Abbott, and D. J. Begley, “Transcytosis of macromolecules at the blood-brain barrier,” Adv. Pharmacol., 71, 147–151 (2014).CrossRefPubMedGoogle Scholar
  19. 19.
    J. M. Richman, E. M. Joe, S. R. Cohen, et al., “Bevel direction and postdural puncture headache: a meta-analysis, Neurologist , 12, No. 4, 224–228 (2006).Google Scholar
  20. 20.
    R. Runza, M. Pietrabissa, S. Mantero, et al., “Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations,” Anesth. Analg., 88, No. 6, 1317–1321 (1999).CrossRefPubMedGoogle Scholar
  21. 21.
    G. A. Sawada, C. L. Barsuhn, B. S. Lutzke, et al., “Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants,” Pharmacol. Exp. Ther., 288, No. 3, 1317–1326 (1999).Google Scholar
  22. 22.
    N. Strazielle, and J. F. Ghersi-Egea, “Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules,” Mol. Pharmacol., 10, No. 5, 1473–1491 (2013).CrossRefGoogle Scholar
  23. 23.
    E. Zarzur, “Mechanical properties of the human lumbar dura mater,” Arq. Neuropsiquiatr., 54, No. 3, 455–460 (1996).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. V. Stogov
    • 1
  • T. A. Silant’eva
    • 1
  • V. V. Krasnov
    • 1
  • N. V. Kubrak
    • 1
  1. 1.Russian Ilizarov Restorative Traumatology and Orthopedics Scientific CenterMinistry of Health of the Russian FederationKurganRussia

Personalised recommendations