Skip to main content
Log in

Methodological Characteristics of the Use of the Morris Water Maze for Assessment of Cognitive Functions in Animals

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present here a review of the use of the Morris water maze to identify impairments to the cognitive functions of the brain as part of the evaluation of the toxic actions of nanoparticles. Model experiments showed that individual variability in animals’ behavior has significant influences on the results obtained in the water test. The need for preliminary selection of individuals as a measure to reduce such influences is grounded and the type of behavior displayed by the animal in the test to be used as the criterion for selection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Abaeva, V. I. Shumskii, E. N. Petritskaya, et al., “Nanoparticles and nanotechnology today and tomorrow,” Alm. Klin. Med., 22, 10–17 (2010).

    Google Scholar 

  2. A. N. Antsiferova, Yu. P. Buzulukov, V. A. Demin, et al., “Radioactive indictor methods and neutron activation nay or studies of the biokinetics of nanoparticles in the living body,” Ros. Nanotekhnol., 10, No. 1–2, 100–108 (2015).

    CAS  Google Scholar 

  3. I. V. Gmoshinskii, S. A. Khotimchenko, V. O. Popov, et al., “Nanoma terials and nanotechnology: analysis and monitoring methods,” Usp. Khim., 82, No. 1, 48–76 (2013).

    Article  Google Scholar 

  4. D. Goleman, Emotional Intelligence [Russian translation], AST, Moscow (2010).

    Google Scholar 

  5. D. A. Zhukov, Stop, Who’s Leading? The Biology of Humans and Other Animals, Alpina Non-Fiction, Moscow (2014).

  6. N. F. Izmerov, A. V. Tkach, and L. A. Ivanova, “Nanotechnology and nanoparticles – the state of the problem and tasks for occupational medicine,” Med. Truda Promyshl. Ekol., No. 8, 1–5 (2007).

    Google Scholar 

  7. I. Ya. Podol’skii and I. V. Shchegov, “Effects of suppressing protein ynthesis in the central nervous system on the formation of longterm memory in solving various behavioral tasks,” Zh. Vyssh. Nerv. Deyat., 54, No. 1, 59–67 (2004).

    Google Scholar 

  8. O. A. Solov’eva, Z. I. Storozheva, A. T. Proshin, and V. V. Sherstnev, “Effects of the neurogenesis stimulator Ro 25-6981 on the formation of a spatial skill in adult rats depends on the time of administration and the animals’ learning ability,” Ros. Fiziol. Zh., 97, No. 2, 146–154 (2011).

    Google Scholar 

  9. R. Tomilenko and N. Dubrovina, “Selectivity of the effects of dizocilpine on spatial learning in low- and high-anxiety mice,” Byull. Sib. Otdel. Ros. Akad. Med. Nauk, No. 1, 97–102 (2007).

    Google Scholar 

  10. D. Bucci, A. Chiba, and M. Gallagher, “Spatial learning in male and female Long–Evans rats,” Behav. Neurosci., 109, No. 1, 180–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. O. Buresova, E. Panakhova, and J. Bures, “Post-trial fl icker stimulation interferes with spatial memory in the Morris water maze,” Neurosci. Lett., 56, 359–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. C. Consalvi, “Motivation and learning in a water maze,” Psychon. Sci., 16, No. 1, 34–35 (1969).

    Article  Google Scholar 

  13. J. Crawley, “Exploratory behavior models of anxiety in mice,” Neurosci. Biobehav. Rev., 9, 37–44 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. D. Van Dam, G. Lenders, and P. De Deyn, “Effect of Morris water maze diameter on visual-spatial learning in different mouse strains,” Neurobiol. Learn. Mem., 85, 164–172 (2006).

    Article  PubMed  Google Scholar 

  15. J. Daniel, S. Roberts, and G. Dohanich, “Effects of ovarian hormones and environment on radial maze and water maze performance of female rats,” Physiol. Behav., 66, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. R. D’Hooge and P. De Deyn, “Applications of the Morris water maze in the study of learning and memory,” Brain Res. Rev., 36, 60–90 (2001).

    Article  PubMed  Google Scholar 

  17. G. Diana, M. Domenico, A. Loizzo, et al., “Age and strain differences in rat place learning and hippocampal dentate gyrus frequency-potentiation,” Neurosci. Lett., 171, 113–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. H. Eichenbaum, C. Stewart, and R. Morris, “Hippocampal representation in place learning,” J. Neurosci., 10, 3531–3542 (1990).

    CAS  PubMed  Google Scholar 

  19. S. Evans, “How rats learn the simple alternation problem in a temporal water maze,” Pedag. Seminary and J. Genetic Psychol., 50, No. 2, 243–275 (1937).

    Article  Google Scholar 

  20. M. Gallagher and M. Nicolle, “Animal models of normal aging, relationship between cognitive decline and markers in hippocampal circuitry,” Behav. Brain Res., 57, 155–162 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. A. Garthe, J. Behr, and G. Kempermann, “Adult-generated hippocampal neurons allow the fl exible use of spatially precise learning strategies,” PLoS One, 4:e546. doi:10.1371/journal.pone.0005464 (2009).

    Article  Google Scholar 

  22. J.-F. Ge, C.-C. Qi, J.P. Qiao, et al., “Sex differences in ICR mice in the Morris water maze task,” Physiol. Res., 62, 107–117 (2013).

    CAS  PubMed  Google Scholar 

  23. Y. Geinisman, L. Detoleddo-Morrell, F. Morrell, and R. Heller, “Hippocampal markers of aged-related memory dysfunction: behavioral, electrophysiological and morphological perspectives,” Prog. Neurobiol., 45, 223–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. O. Glaser, “The formation of habits at high speed,” J. Comp. Neurol., 20, 165–184 (1910).

    Google Scholar 

  25. N. Van Goethem, K. Rutten, F. J. can der Staay, et al., “Object recognition testing: Rodent species, strains, housing conditions, and estrous cycle,” Behav. Brain Res., 232, No. 2, 323–334 (2012).

  26. H. Gordon and P. Lee, “No difference in cognitive performance between phases of the menstrual cycle,” Psychoneuroendocrinology, 18, No. 7, 521–531 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. A. Gouveia, U. dos Santos, F. Felisbino, et al., “Infl uence of the estrous cycle on the behavior of rats in the elevated T-maze,” Behav. Proc., 67, No. 2, 167–171 (2004).

    Article  Google Scholar 

  28. A. Gouveia, T. Afonseca, C. Maximino, et al., “Infl uence of gender and estrous cycle in the forced swim test in rats,” Psychol. Neurosci., 1, No. 2, 191–197 (2008).

    Article  Google Scholar 

  29. E. Grauer and Y. Kapon, “Wistar-Kyoto rats in the Morris water maze, impaired working memory and hyper-reactivity to stress,” Behav. Brain Res., 59, 147–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. T. Hoh and D. Cain, “Fractionating the nonspatial pretraining effect in the water maze task,” Behav. Neurosci., 111, 1285–1291 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. A. Kiss, A. M. Delattre, S. Pereira, et al., “17β-Estradiol replacement in young, adult and intermediate-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas,” Behav. Brain Res., 227, 100–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Li Liu, J. Ding, C. Marshall, et al., “Pretraining affects Morris water maze performance with different patterns between control and ovariectomized plus d-galactose-injected mice,” Behav. Brain Res., 217, 244–247 (2011).

    Article  PubMed  Google Scholar 

  33. M. Lindner and T. Schallert, “Aging and atropine effects on spatial navigation in the Morris water task,” Behav. Neurosci., 102, 621–634 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. M. Lindner, “Reliability, distribution, and validity of age-related cognitive deficits in the Morris water maze,” Neurobiol. Learn. Mem., 68, No. 3, 203–220 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. H. Meziane, A.-M. Ouagazza, L. Aubert, et al., “Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies,” Genes Brain Behav., 6, No. 2, 192–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. R. Morris, “Spatial localization does not require the presence of local cues,” Learn. Motiv., 12, No. 2, 239–260 (1981).

    Article  Google Scholar 

  37. R. Morris, “Development of a water maze procedure for studying spatial learning in the rat,” J. Neurosci. Meth., 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  38. M. Packard, J. Kohlmaier, and G. Alexander, “Posttraining intrahippocampal estradiol injections enhance spatial memory in male rats: interaction with cholinergic systems,” Behav. Neurosci., 110, 626–632 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. M. Packard and L. Teather, “Intra-hippocampal estradiol infusion enhances memory in ovariectomized rats,” NeuroReport, 8, 3009–3013 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. H. Van Praag, T. Shubert, C. Zhao, and F. Gage, “Exercise enhances learning and hippocampal neurogenesis in aged mice,” J. Neurosci., 25, 8680–8685 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. A. Rissanen, J. Puolivali, T. van Groen, and P. Riekkinen, Jr., “In mice tonic estrogen replacement therapy improves non-spatial and spatial memory in a water maze task,” NeuroReport, 10, 1369–1372 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. E. Rissman, S. Wersinger, H. Fugger, and T. Foster, “Sex with knock out models: behavioral studies of estrogen receptor alpha,” Brain Res., 835, 80–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. R. Roof, “Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats,” Behav. Brain Res., 53, 1–10 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. S. Royle, F. Collins, H. Rupniak, et al., “Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice,” Brain Res., 816, 337–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. B. Saab, A. Saab, and J. Roder, “Statistical and theoretical considerations for the platform re-location water maze,” J. Neurosci. Meth., 198, 44–52 (2011).

    Article  Google Scholar 

  46. D. Saucier, and D. Cain, “Spatial learning without NMDA receptor-dependent long-term potentiation,” Nature, 378, 186–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. S. Shigeta, T. Misawa, T. Yoshida, et al., “Neurobehavioral analysis of high-rate Sidman avoidance rat strain,” Yakubutsu Seishin Kodo, 9, 217–224 (1989).

    CAS  PubMed  Google Scholar 

  48. J. Simpson and J. Kelly, “The impact of environmental enrichment in laboratory rats – behavioural and neurochemical aspects,” Behav. Brain Res., 222, 246–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. R. Stackman, M. Blasberg, C. Langan, and A. Clark, “Stability of spatial working memory across the estrous cycle of Long–Evans rats,” Neurobiol. Learn. Mem., 67, No. 2, 167–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. A. Terry, “Spatial navigation (water maze) tasks,” in: Methods of Behavior Analysis in Neuroscience, J. J. Buccafusco (ed.), CRC Press, Boca Raton (2009), 2nd ed.

  51. C. Vorhees and M. Williams, “Morris water maze: procedures for assessing spatial and related forms of learning and memory,” Nat. Protoc., 1, No. 2, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. M. Waller, P. Waller, and L. Brewster, “A water maze for use in studies of drive and learning,” Psychol. Rep., 7, 99–102 (1960).

    Article  Google Scholar 

  53. S. Warren and J. Juraska, “Spatial and nonspatial learning across the rat estrous cycle,” Behav. Neurosci., 111, No. 2, 259–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. I. Whishaw and J.-A. Tomie, “Of mice and mazes: similarities between mice and rats on dry land but not water maze,” Physiol. Behav., 60, 1191–1197 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. D. Wolfer, M. Stagljar-Bozicevic, M. Errington, and H.-P. Lipp, “Spatial memory and learning in transgenic mice: fact or artifact?” Physiology, 13, No. 3, 118–123 (1998).

    Google Scholar 

  56. D. Wolfer, R. Madani, P. Valenti, and H. Lipp, “Extended analysis of path data from mutant mice using the public domain software Wintrack,” Physiol. Behav., 73, 745–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. P. Woods, E. Davidson, and R. Peters, “Instrumental escape conditioning in a water tank: effects of variation in drive stimulus intensity and reinforcement magnitude,” J. Comp. Psychol., 57, 466–470 (1964).

    Article  CAS  Google Scholar 

  58. J. Yau, K. McNair, J. Noble, et al., “Enhanced hippocampal long-term potentiation and spatial learning in aged 11-hydroxysteroid dehydrogenase type 1 knock-out mice,” J. Neurosci., 27, 10487–10496 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivlieva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 1, pp. 3–17, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivlieva, A.L., Petritskaya, E.N., Rogatkin, D.A. et al. Methodological Characteristics of the Use of the Morris Water Maze for Assessment of Cognitive Functions in Animals. Neurosci Behav Physi 47, 484–493 (2017). https://doi.org/10.1007/s11055-017-0425-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0425-z

Keywords

Navigation