Skip to main content

Advertisement

Log in

Changes in the Qualitative and Quantitative Composition of the Intestinal Microflora in Rats in Experimental Allergic Encephalomyelitis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here a study using a model of multiple sclerosis – experimental allergic encephalomyelitis (EAE) – to investigate changes in the qualitative and quantitative composition of the intestinal microbiota in rats with disease symptoms and with a symptom-free course. When clinical symptoms of EAE were apparent, there were changes in the composition of the microbiota of the gastrointestinal tract, with increases in the numbers of Gram-negative opportunistically pathogenic bacteria: Citrobacter spp., Klebsiella spp., and atypical E. coli. Rats without clinical signs of EAE were also found to have increased contents of Faecalibacterium prausnitzii. The significance of complexes changes in the composition of the intestinal microbiota is discussed, as this provides evidence of prolonged persistence of dysbacteriosis in rats on developing EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Abdurasulova, Yu. L. Zhitnukhin, E. A. Tarasova, and V. M. Klimenko, “Expression of cytokine mRNAs in the spleen and spinal cord in rats with EAE of different severity,” Med. Immunol., 6, No. 1–2, 37–46 (2004).

    Google Scholar 

  2. I. N. Abdurasulova and V. M. Klimenko, “The role of immune and glial cells in the process of neurodegeneration,” Med. Akad. Zh., No. 1, 12–29 (2011).

  3. B. M. Bondarenko and E. V. Ryabichenko, “The role of dysfunction of the intestinal barrier in maintaining chronic inflammatory processes in different locations,” Zh. Mikrobiol., No. 1, 92–100 (2010).

  4. E. G. Gilerovich, E. A. Fedorova, I. N. Abdurasulova, et al., “Analysis of the morphological signs of inflammatory reactions in the spinal cord in Wistar rats in an experimental model,” Morfologiya, 138, No. 5, 16–20 (2010).

    Google Scholar 

  5. E. I. Ermolenko, V. A. Isakov, S. Kh. Zhdan-Pushkina, and V. V. Tets, “Quantitative characteristics of the antagonist activity of lactobacilli,” Zh. Mikrobiol., No. 5, 94–98 (2004).

  6. Yu. L. Zhitnukhin, I. N. Abdurasulova, E. A. Tarasova, et al., “Characteristics of the dynamics of circulating and expressed cytokines on induction of experimental allergic encephalomyelitis,” Med. Immunol., No. 2–3, 193–202 (2008).

  7. A. V. Pozdnyakov, I. N. Abdurasulova, and L. N. Prakhova, “Proton magnetic resonance spectroscopy in studies of the metabolic mechanisms of demyelinating processes in experimental allergic encephalomyelitis,” Luch. Diagn. Ter., 2, No. 1, 30–36 (2010).

    Google Scholar 

  8. R. V. Epshtein-Litvak and F. L. Vil’shanskaya, Bacteriological Diagnosis of Intestinal Dysbacteriosis. Methodological Recom men dations, Moscow (1977).

  9. P. C. Arck, B. Handjiski, E. M. Peters, et al., “Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways,” Am. J. Pathol., 162, No. 3, 803–814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Arck and R. Paus, “From the brain-skin connection: the neuroendocrineimmune misalliance of stress and itch,” Neuroimmunomodulation, 13, No. 5–6, 347–356 (2006).

    CAS  PubMed  Google Scholar 

  11. P. Arck, B. Handjiski, E. Hagen, et al., “Is there a ‘gut–brain–skin axis?” Exp. Dermatol., 19, No. 5, 401–405 (2010).

    Article  PubMed  Google Scholar 

  12. K. Atarashi, T. Tanouse, T. Shima, et al., “Induction of colonic regulatory T cells by indigenous Clostridium species,” Science, 331, No. 6015, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. K. A. Baken, J. Ezendam, E. R. Gremmer, et al., “Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression,” Int. J. Food Microbiol., 112, No. 1, 8–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. M. Banati, P. Csecsei, E. Koszegi, et al., “Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system,” Eur. J. Neurol., 20, No. 11, 1492–1495 (2013).

    CAS  PubMed  Google Scholar 

  15. A. K. Benson, S. A. Kelly, R. Legge, et al., “Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors,” Proc. Natl. Acad. Sci. USA, 107, No. 44, 18 933–18 938 (2010).

    Article  CAS  Google Scholar 

  16. K. Berer, M. Mues, M. Koutrolos, et al., “Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination,” Nature, 47, No. 7374, 538–541 (2011).

    Article  Google Scholar 

  17. J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R. Knight, “The impact of the gut microbiota on human health: an integrative view,” Cell, 148, No. 6, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. De Filippo, D. Cavalieri, M. Di Paola, et al., “Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa,” Proc. Natl. Acad. Sci. USA, 107, No. 33, 14,691–14,696 (2010).

    Article  Google Scholar 

  19. C. J. Edwards, “Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis,” J. Rheumatol., 35, No. 8, 1477–1479 (2008).

    PubMed  Google Scholar 

  20. J. Ezendam, A. de Klerk, E. R. Gremmer, and H. van Loveren, “Effects of Bifi dobacterium animalis administered during lactation on allergic and autoimmune responses in rodents,” Clin. Exp. Immunol., 154, No. 3, 424–431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Ezendam and H. van Loveren, “Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice,” Br. J. Nutr., 99, No. 1, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. D. N. Frank, A. L. St. Amand, R. A. Feldman, et al., “Molecularphylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases,” Proc. Natl. Acad. Sci. USA, 104, No. 34, 13 780–13 785 (2007).

    Article  CAS  Google Scholar 

  23. V. Gaboriau-Routhiau, S. Rakotobe, E. Lécuyer, et al., “The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses,” Immunity, 31, No. 4, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. B. Gregory and V. C. Ho, “Cutaneous manifestations of gastrointestinal disorders. Part I,” J. Am. Acad. Dermatol., 26, No. 2, Pt. 1, 153–166 (1992).

  25. B. Gregory and V. C. Ho, “Cutaneous manifestations of gastrointestinal disorders. Part II,” J. Am. Acad. Dermatol., 26, No. 3, Pt. 2, 371–383 (1992).

  26. J. A. Hall and Y. Belkaid, “Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses,” Immunity, 29, No. 4, 637–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Harkiolaki, S. L. Holmes, P. Svendsen, et al., “T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides,” Immunity, 30, No. 3, 348–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. I. I. Ivanov, Frutos, R. de Llanos, et al., “Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine,” Cell Host Microbe, 4, No. 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. I. Ivanov, K. Atarashi, N. Manel, et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, 139, No. 3, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Kira, K. Yamasaki, I. Horiuchi, et al., “Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan,” J. Neurol. Sci., 166, No. 1, 53–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. M. Kleinewietfeld, A. Manzel, J. Titze, et al., “Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells,” Nature, 496, No. 7446, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Kobayashi, I. Kato, M. Nanno, et al., “Oral administration of probiotic bacteria, Lactobacillus casei and Bifi dobacterium breve, does not exacerbate neurological symptoms in experimental autoimmune encephalomyelitis,” Immunopharmacol. Immunotoxicol., 32, No. 1, 116–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. H. K. Kwon, G. C. Kim, Y. Kim, et al., “Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response,” Clin. Immunol., 146, No. 3, 217–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. S. Lavasani, B. Dzhambazov, M. Nouri, et al., “A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells,” PLoS One, 5, No. 2, e9009 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. K. Lauer, “Diet and multiple sclerosis,” Neurology, 49, No. 2, Sup pl. 2, S55–S61 (1997).

  36. Y. K. Lee, J. S. Menezes, Umesaki, and S. K. Mazmanian, “Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis,” Proc. Natl. Acad. Sci. USA, 108, Suppl. 1, 4615–4622 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. D. J. Leventhal, F. Rahman, S. Nusrat, et al., “Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis,” Mult. Scler. Int., Article ID 319201, (2013).

  38. C. B. Maassen and E. Claassen, “Strain-dependent effects of probiotic lactobacilli on EAE autoimmunity,” Vaccine, 26, No. 17, 2056–2057 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. S. K. Mazmanian, C. H. Liu, A. O. Tzianabos, and D. L. Kasper, “An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system,” Cell, 122, No. 1, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. H. F. McFarland and R. Martin, “Multiple sclerosis: a complicated picture of autoimmunity,” Nat. Immunol., 8, No. 9, 913–919 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. D. M. McKay and J. Bienenstock, “The interaction between mast cells and nerves in the gastrointestinal tract,” Immunol. Today, 15, No. 11, 533–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. S. Miquel, R. Martín, O. Rossi, et al., “Faecalibacterium prausnitzii and human intestinal health,” Curr. Opin. Microbiol., 16, No. 3, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. S. Nessler, R. Dodel, A. Bittner, et al., “Effect of minocycline in experimental autoimmune encephalomyelitis,” Ann. Neurol., 52, No. 5, 689–690 (2002).

    Article  PubMed  Google Scholar 

  44. J. Ochoa-Repáraz, D. W. Mielcarz, L. E. Ditrio, et al., “Role of gut commensal microfl ora in the development of experimental autoimmune encephalomyelitis,” J. Immunol., 183, No. 106041–6050 (2009).

  45. J. Ochoa-Repáraz, D. W. Mielcarz, L. E. Ditrio, et al., “Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression,” J. Immunol., 185, No. 7, 4101–4108 (2010).

    Article  PubMed  Google Scholar 

  46. J. Ochoa-Repáraz, D. W. Mielcarz, Y. Wang, et al., “A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease,” Mucosal Immunol., 3, No. 5, 487–495 (2010).

    Article  PubMed  Google Scholar 

  47. C. O’Mahony, P. Scully, D. O’Mahony, et al., “Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappa B activation,” PLoS Pathog., 4, No. 8, el000112 (2008).

    Google Scholar 

  48. L. Piccio, J. L. Stark, and A. H. Cross, “Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis,” J. Leukoc. Biol., 84, No. 4, 940–948 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. N. Popovic, A. Schubart, B. D. Goetz, et al., “Inhibition of autoimmune encephalomyelitis by a tetracycline,” Ann. Neurol., 51, No. 2, 215–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. P. Riccio and R. Possano, “Nutrition facts in multiple sclerosis,” ASN Neuro, 7, No. 1, 1–20 (2015).

    Article  Google Scholar 

  51. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nat. Rev. Immunol., 9, No. 5, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. L. Round and S. K. Mazmanian, “Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota,” Proc. Natl. Acad. Sci. USA, 107, No. 27, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K. R. Rumah, J. Linden, V. A. Fischetti, and T. Vartanian, “Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides dues for environmental triggers of the disease,” PLoS One, 8, No. 10, e76359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R. K. Sellon, S. Tonkonogy, M. Schulz, et al., “Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice,” Infect. Immun., 66, No. 11, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. H. Sokol, P. Seksik, L. Rigottier-Gois, et al., “Specificities of the fecal microbiota in inflammatory bowel disease,” Inflamm. Bowel Dis., 12, No. 2, 106–111 (2006).

    Article  PubMed  Google Scholar 

  56. H. Sokol, B. Pigneur, L. Watterlot, et al., “Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identifi ed by gut microbiota analysis of Crohn disease patients,” Proc. Natl. Acad. Sci. USA, 105, No. 43, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Sriam, W. Mitchell, and C. Stratton, “Multiple sclerosis associated with Chlamydia pneumoniae infection of the CNS,” Neurology, 50, No. 2, 571–572 (1998).

    Article  Google Scholar 

  58. G. Steiner, “Acute plaques in multiple sclerosis, their pathogenetic significance and the role of spirochetes as etiological factor,” J. Neuropathol. Exp. Neurol., 11, No. 4, 343–372 (1952).

    Article  CAS  PubMed  Google Scholar 

  59. C. W. Stratton and D. B. Wheldon, “Multiple sclerosis: An infectious syndrome involving Chlamydophila pneumoniae,” Trends Microbiol., 14, No. 11, 474–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. K. Takata, M. Kinoshita, T. Okuno, et al., “The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells,” PLoS One, 6, No. 11, e27644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Teitelman, T. H. Joh, and D. J. Reis, “Linkage of the brain-skin-gut axis: islet cells originate from dopaminergic precursors,” Peptides, 2, Suppl. 2, 157–168 (1981).

    Article  CAS  PubMed  Google Scholar 

  62. P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, et al., “The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice,” Sci. Transl. Med., 1, No. 6, 6ra14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. F. Van Immerseel, R. Ducatelle, M. de Vos, et al., “Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease,” J. Med. Microbiol., 59, No. 2, 141–143 (2010).

    Article  PubMed  Google Scholar 

  64. L Wen, R. E. Ley, P. Y. Volchkov, et al., “Innate immunity and intestinal microbiota in the development of Type 1 diabetes,” Nature, 455, No. 7216, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. F. C. Westall, “Molecular mimicry revisited: Gut bacteria and multiple sclerosis,” J. Clin. Microbiol., 44, No. 6, 2099–2104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. J. Wu, I. I. Ivanov, J. Darce, et al., “Gut residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells,” Immunity, 32, No. 6, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. G. D. Wu, J. Chen, C. Hoffmann, et al., “Linking longterm dietary patterns with gut microbial enterotypes,” Science, 334, No. 6052, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. G. D. Wu, F. D. Bushmanc, and J. D. Lewis, “Diet, the human gut microbiota, and IBD,” Anaerobe, 24, 117–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. H. Yokote, S. Miyake, J. L. Croxford, et al., “NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut fl ora,” Am. J. Pathol., 173, No. 6, 1714–1723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. R. K. Zabad, L. M. Metz, T. R. Todoruk, et al., “The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: A pilot study,” Mult. Scler., 13, No. 4, 517–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. U. Zhang, L. M. Metz, V. W. Yong, et al., “Pilot study of minocycline in relapsing-remitting multiple sclerosis,” Can. J. Neurol. Sci., 35, No. 2, 185–191 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Abdurasulova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 11, pp. 1235–1249, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurasulova, I.N., Tarasova, E.A., Matsulevich, A.V. et al. Changes in the Qualitative and Quantitative Composition of the Intestinal Microflora in Rats in Experimental Allergic Encephalomyelitis. Neurosci Behav Physi 47, 328–336 (2017). https://doi.org/10.1007/s11055-017-0401-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0401-7

Keywords

Navigation