Skip to main content
Log in

Dynamics of the Duration of Gaze Fixation and Event-Related Potentials on Presentation of Fading-In Images and Distractors

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A method of studying the dynamics of visual attention in humans at different stages of examining and recognizing complex images is described. The characteristics of the method include presenting dynamically formed whole images and distractors in the foveal area of the visual field. Experimental data on the effects of acclimation to distractors, the bimodal distribution of fixation duration when distractors are used, and the relationship between the effect of the distractor and the complexity of the target image are presented. Most EEG leads, except the occipital leads, showed significant decreases in the latent period of the P350 component of fixation-linked potentials on simultaneous presentation of whole images and distractors. The potential for using these results to create work-oriented tests for assessment of the state of visual attention in human operators without interfering with their work is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Baranov-Krylov, V. T. Shuvaev, and I. E. Kanunikov, “Characteristics of the activation in the parietal areas of the cortex in humans in different forms of visual attention,” Ros. Fiziol. Zh., 92, No. 2, 178–191 (2006).

    CAS  Google Scholar 

  2. B. V. Burdin, M. V. Mikhailyuk, I. G. Sokhin, and M. A. Torgashev, “Use of virtual 3D models for experimental processing of on-board piloting operations performed by anthropomorphic robots,” Robototekh. Tekhnich. Kibernet., No. 1, 42–46 (2013).

  3. B. M. Vladimirskii, A. B. Gorstko, and Ya. M. Erusalimskii, Mathematics. A General Course, Lan’, Rostov-on-Don, (2008).

    Google Scholar 

  4. V. N. Koroi, E. V. Aslanyan, O. M. Bakhtin, et al., The Human Factor and Safety of Aviation Transport: Mechanisms of Formation and Methods for the Diagnosis of the Functional State of Human Operators, IPK KIBI Media Center, Southern Federal University (2014).

  5. A. L. Yarbus, The Role of Eye Movements in the Process of Vision, Nauka, Moscow (1965).

    Google Scholar 

  6. U. Ahlstrom and F. J. Friedman-Berg, “Using eye movement activity as a correlate of cognitive workload,” Int. J. Industr. Ergonom., 36, No. 7, 623–636 (2006).

    Article  Google Scholar 

  7. M. A. Carrasco, “Visual attention: the past 25 years,” Vision Res., 51, No. 13, 1484–1525 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. Deplancke, L. Madelain, A. Chauvin, et al., “Infl uence of near threshold visual distractors on perceptual detection and reaching movements,” J. Neurophysiol., 104, No. 4, 2249–2256 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. O. Dimigen, W. Sommer, A. Hohlfeld, et al., “Coregistration of eye movements and EEG in natural reading: analyses and review,” J. Exp. Psychol. Gen., 140, No. 4, 552–572 (2011).

    Article  PubMed  Google Scholar 

  10. J. Gobell and M. Carrasco, “Attention alters the appearance of spatial frequency and gap size,” Psychol. Sci., 16, No. 8, 644–651 (2005).

    Article  PubMed  Google Scholar 

  11. S. T. Graupner, S. Pannasch, and B. M. Velichkovsky, “Saccadic context indicates information processing within visual fixations: Evidence from event-related potentials and eye-movements analysis of the distractor effect,” Int. J. Psychophysiol., 80, No. 1, 54–62 (2011).

    Article  PubMed  Google Scholar 

  12. S. T. Graupner, B. M. Velichkovsky, S. Pannasch, and J. Marx, “Surprise, surprise: Two distinct components in the visually evoked distractor effect,” Psychophysiology, 44, 251–261 (2007).

    Article  PubMed  Google Scholar 

  13. J. M. Henderson and G. L. Pierce, “Eye movements during scene viewing: Evidence for mixed control of fixation durations,” Psychon. Bull. Rev., 15, No. 3, 566–573 (2008).

    Article  PubMed  Google Scholar 

  14. I. Hooge and C. J. Erkelens, “Adjustment of fixation duration in visual search,” Vision Res., 38, No. 9, 1295–1302 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. T. I. Koltunova and L. N. Podladchikova, “Distractor effect at initial stages of recognition depends on visual image properties,” J. Integr. Neurosci., 12, No. 1, 91–101 (2013).

    Article  PubMed  Google Scholar 

  16. N. Lavie, “The role of perceptual load in visual awareness,” Brain Res., 1080, No. 1, 91–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. S. Mathan, A. Smart, T. Ververs, and M. Feuerstain, “Towards an index of cognitive efficacy,” in: 32nd Ann. Int. Conf. IEEE EMBS (2010), pp. 6595–6598.

  18. M. Nystrom and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods, 42, No. 1, 188–204 (2010).

    Article  PubMed  Google Scholar 

  19. L. N. Podladchikova, D. G. Shaposhnikov, T. I. Koltunova, et al., “Temporal dynamics of fixation duration, saccade amplitude, and viewing trajectory,” J. Integr. Neurosci., 8, No. 4, 487–501 (2009).

    Article  PubMed  Google Scholar 

  20. L. N. Podladchikova, D. G. Shaposhnikov, A. V. Tikidgji-Hamburyan, et al., “Model-based approach to study the mechanisms of complex image viewing,” J. Opt. Mem. Neural Netw., 18, No. 2, 114–121 (2009).

    Article  Google Scholar 

  21. M. Pomplun, E. M. Reingold, and J. Shen, “Peripheral and parafoveal cueing and masking effects on saccadic selectivity in a gaze-contingent window paradigm,” Vision Res., 41, No. 21, 2757–2769 (2002).

    Article  Google Scholar 

  22. C. M. Priviterra and L. Stark, “Scanpath theory, attention and image processing algorithms for prediction of human eye fixations,” in: Neurobiology of Attention, Elsevier Academic, Los Angeles (2005), pp. 296–299.

  23. E. M. Reingold and D. M. Stampe, “Saccadic inhibition in voluntary and refl exive saccades,” J. Cogn. Neurosci., 14, No. 3, 371–388 (2002).

    Article  PubMed  Google Scholar 

  24. I. Rybak, V. Gusakova, A. Golovan, et al., “Attention-guided recognition based on ‘What’ and ‘Where’ representations: a behavioral model,” in: Neurobiology of Attention, Elsevier Academic, Los Angeles (2005), pp. 663–670.

  25. C. Tandonnet, D. Massendari, and F. Vitu, “When larger visual distractors become less disruptive: Behavioral evidence for lateral inhibition in saccade generation,” J. Vision, 12, No. 4, 1–11 (2012).

    Article  Google Scholar 

  26. R. Walker, H. Deubel, W. X. Schneider, and J. M. Findlay, “Effect of remote distracters on saccade programming: Evidence for an extended fixation zone,” J. Neurophysiol., 78, No. 2, 1108–1119 (1997).

    CAS  PubMed  Google Scholar 

  27. D. B. Walther and C. Koch, “Attention in hierarchical models of object recognition,” Prog. Brain Res., 165, 57–78 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 10, pp. 1202–1212, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltunova, T.I., Podladchikova, L.N., Shaposhnikov, D.G. et al. Dynamics of the Duration of Gaze Fixation and Event-Related Potentials on Presentation of Fading-In Images and Distractors. Neurosci Behav Physi 47, 321–327 (2017). https://doi.org/10.1007/s11055-017-0400-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0400-8

Keywords

Navigation