Skip to main content

Advertisement

Log in

The Neurotropic, Anti-Inflammatory, and Antitumor Properties of the Hopantenic Acid Molecule Based on Chemoinformatic Analysis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Hopantenic acid is a known nootropic agent with a chemical structure close to that of pantothenic acid (vitamin B5). The neurotropic effect of hopantenic acid may occur as a result of binding with δ and κ opioid receptors, modulating acetylcholine secretion, and interacting with dopamine receptors. Apart from the neurotropic effects, hopantenic acid can modulate the metabolism of prostaglandins and steroids, and may have antitumor actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopantenic Acid. Encylopedia of Drugs of the Russian Drug Register, Moscow (2014).

  2. S. Noda, J. Haratake, A. Sasaki, et al., “Acute encephalopathy with hepatic steatosis induced by pantothenic acid antagonist, calcium hopantenate, in dogs,” Liver, 11, No. 3, 134–142 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. I. Yu. Torshin and K. V. Rudakov, “On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph,” Pattern Recognition and Image Analysis, 24, No. 1, 11–23 (2014).

    Article  Google Scholar 

  4. I. Yu. Torshin and K. V. Rudakov, “On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability,” Pattern Recognition and Image Analysis., 24, No. 2, 196–208 (2014).

    Article  Google Scholar 

  5. I. Yu. Torshin and O. A. Gromova, Expert Analysis of Data in Molecular Pharmacology, Moscow Center for Continuing Mathematical Education Press, Moscow (2012).

    Google Scholar 

  6. K. V. Rudakov and I. Yu Torshin, “Analysis of the informativeness of motifs based on the solvability criterion in the recognition of protein secondary structure,” Informat. Primen., 5, No. 4, 40–50 (2011).

    Google Scholar 

  7. Yu. I. Zhuravlev, K. V. Rudakov, and I. Yu. Torshin, “Algebraic criteria for local solvability and regularity as a tool for studying the morphology of amino acid sequences,” Tr. MFTI, 3, No. 4, 67–76 (2011).

    Google Scholar 

  8. K. V. Rudakov and I. Yu. Torshin, “Selection of informative values of parameters based on solvability criteria in the recognition of protein secondary structure,” Dokl. Akad. Nauk., 441, No. 1, 1–5 (2011).

    Google Scholar 

  9. I. Yu. Torshin, “On solvability, regularity, and locality of the problem of genome annotation,” Pattern Recognition and Image Analysis, 20, No. 3, 386–395 (2010).

    Article  Google Scholar 

  10. Yu. I. Zhuravlev, “Set theory methods in the algebra of logic,” Probl. Kibernet., 8, No. 1, 25–45 (1962).

    Google Scholar 

  11. Yu. I. Zhuravlev, “Correct algebras over sets of incorrect (heuristic) algorithms,” Kibernetika, 4, 5–17 (1977).

    Google Scholar 

  12. Yu. I. Zhuravlev, “Algebraic approaches to solving the tasks of recognition and classifi cation,” in: Problems in Cybernetics, Nauka, Moscow (1978), Iss. 33, pp. 5–68.

  13. Y. Wang, T. Suzek, J. Zhang, et al., “PubChem BioAssay: 2014 update,” Nucl. Acids Res., 42 (Database issue), D1075-1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. D. S. Wishart, T. Jewison, A. C. Guo, et al., “HMDB 3.0 – The Human Metabolome Database in 2013,” Nucl. Acids Res., 41, D801-807 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. S. Dutta, D. Dimitropoulos, Z. Feng, et al., “Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank,” Biopolymers, 101, No. 6, 659–668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. A. Voronina, Pantogam and Pantogam Active. Pharmacological Effects and Mechanisms of Action, Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow.

  17. A. M. Ovezov, M. A. Lobov, M. V. Panteleeva, et al., “Correction of early cognitive disorders in school-age children operated under total intravenous anaesthesia,” Anestez. Reanimatol., No. 3, 25–29 (2012).

    Google Scholar 

  18. A. D. Corbett, G. Henderson, A. T. McKnight, and S. J. Paterson, “75 years of opioid research: the exciting but vain quest for the Holy Grail,” Br. J. Pharmacol., 147, Supplement, 153–162 (2006).

  19. M. Waldhoer, S. E. Bartlett, and J. L. Whistler, “Opioid receptors,” Ann. Rev. Biochem., 73, 953–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. B. N. Dhawan, F. Cesselin, R. Raghubir, et al., “International Union of Pharmacology. XII. Classifi cation of opioid receptors,” Pharmacol. Rev., 48, No. 4, 567–592 (1996).

    CAS  PubMed  Google Scholar 

  21. A. Janecka, J. Fichna, and T. Janecki, “Opioid receptors and their ligands, Curr. Top. Med. Chem., 4, No. 1, 1–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. B. Katzung, Basic and Clinical Pharmacology, McGraw-Hill Medical (2007), 10th ed., pp. 489–490, p. 1200.

  23. E. V. Varga, E. Navratilova, D. Stropova, et al., “Agonist-specific regulation of the delta-opioid receptor,” Life Sci., 76, No. 6, 599–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. R. M. Quock, T. H. Burkey, E. Varga, et al., “The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy,” Pharmacol. Rev., 51, No. 3, 503–532 (1999).

    CAS  PubMed  Google Scholar 

  25. J. Zhang, H. Qian, P. Zhao, et al., “Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor,” Stroke, 37, No. 4, 1094–1099 (2006).

    Article  PubMed  Google Scholar 

  26. L. Guo, L. Zhang, and D. C. Zhang, “Mechanisms of delta-opioids cardioprotective effects in ischemia and its potential clinical applications,” Sheng Li Ke Xue Jin Zhan, 36, No. 4, 333–336 (2005).

    CAS  PubMed  Google Scholar 

  27. Z. Z. Pan, “mu-Opposing actions of the kappa-opioid receptor,” Trends Pharmacol. Sci., 19, No. 3, 94–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. K. Yamada, M. Imai, and S. Yoshida, “Mechanism of diuretic action of U-62,066E, a kappa opioid receptor agonist,” Eur. J. Pharmacol., 160, No. 2, 229–237 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. E. Zeynalov, M. Nemoto, P. D. Hurn, et al., “Neuroprotective effect of selective kappa opioid receptor agonist is gender specific and linked to reduced neuronal nitric oxide,” J. Cereb. Blood Flow Metab., 26, No. 3, 414–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. O. A. Gromova, I. Yu. Torshin, T. R. Grishina, et al., “Systematic analysis of the molecular-physiological effects myoinositol: molecular biology data and experimental and clinical medicine,” Effektiv. Farmakoter, 28, 4–12 (2013).

    Google Scholar 

  31. O. A. Gromova, E. A. Goncharova, I. Yu. Torshin, et al., “Potential for the use of myoinositol in the pregravid preparation of women with polycystic ovaries and insulin resistance,” Ginekologiya, No. 1, 58–65 (2014).

    Google Scholar 

  32. O. A. Gromova, I. Yu. Torshin, and O. A. Limanova, “Potential for the use of myoinositol in women with polycystic ovaries and insulin resistance in programs for the pregravid preparation for in vitro fertilization,” Akusher. Ginekol., No. 5, 12–23 (2013).

    Google Scholar 

  33. Rang & Dale’s Pharmacology, Churchill Livingstone (2011).

  34. U. Yokoyama, K. Iwatsubo, M. Umemura, et al., “The prostanoid EP4 receptor and its signaling pathway,” Pharmacol. Rev., 65, No. 3, 1010–1052 (2013).

    Article  PubMed  Google Scholar 

  35. M. V. Karlina, O. N. Pozharitskaya, V. M. Kosman, et al., “Studies of the pharmacokinetics of hopantenic acid after oral administration,” Eksperim. Klin. Farmakol., 73, No. 8, 46–48 (2010).

    CAS  Google Scholar 

  36. L. Dong, J. Wen, E. Pier, et al., “Melanocyte-stimulating hormone directly enhances UV-Induced DNA repair in keratinocytes by a xeroderma pigmentosum group A-dependent mechanism,” Cancer Res., 70, No. 9, 3547–3556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S. K. Manna and B. B. Aggarwal, “Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappaB activation induced by various infl ammatory agents,” J. Immunol., 161, No. 6, 2873–2880 (1998).

    CAS  PubMed  Google Scholar 

  38. A. L. Kadekaro, J. Chen, J. Yang, et al., “Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes,” Mol. Cancer Res., 10, No. 6, 778–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. G. W. Millington, “Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors,” Clin. Exp. Dermatol., 31, No. 3, 407–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. G. W. Millington, “The role of proopiomelanocortin (POMC) neurones in feeding behaviour,” Nutr. Metab., 4, 18 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gromov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 115, No. 5, Iss 2, Pediatric Neurology and Psychiatry, pp. 61–71, May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromova, O.A., Torshin, I.Y., Limanova, O.A. et al. The Neurotropic, Anti-Inflammatory, and Antitumor Properties of the Hopantenic Acid Molecule Based on Chemoinformatic Analysis. Neurosci Behav Physi 46, 1097–1106 (2016). https://doi.org/10.1007/s11055-016-0357-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0357-z

Keywords

Navigation