Skip to main content

Advertisement

Log in

C-Type Natriuretic Peptide: What, Where and Why?

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review presents data from the world literature on the structure, distribution, and physiological effects of the poorest studied of the natriuretic peptides – C-type natriuretic peptide (CNP). Despite its name, this peptide does not stimulate sodium excretion, but has marked vasodilatory and antiproliferative activities in many organs and tissues. Particular attention is paid to the role of CNP in the central nervous system. Data on the molecular biology of the peptide are presented, including its intracellular processing, the blood concentration of the peptide, the structure of its specific receptors, and signal pathways in target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Korostyshevskaya and V. F. Maksimov, “Where and when natriuretic peptides are secreted,” Ontogenez, 43, No. 3, 1–12 (2012).

    Google Scholar 

  2. V. F. Maksimov and I. M. Korostyshevskaya, “The hormonal system of the heart as a component in the regulation of hemodynamics and water-salt balance,” Ros. Fiziol. Zh., 97, No. 3, 263–275 (2011).

    CAS  Google Scholar 

  3. L.-H. Cao and X.-L. Yang, “Natriuretic peptides and their receptors in the central nervous system,” Prog. Neurobiol., 84, No. 3, 234–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. C. Caniffi, R. Elesgaray, M. Gironacci, et al., “C-type natriuretic peptide effects on cardiovascular nitric oxide system in spontaneously hypertensive rats,” Peptides, 31, 1309–1318 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. J. M. Decker, A. M. Wojtowicz, J. C. Bartsch, et al., “C-type natriuretic peptide modulates bidirectional plasticity in hippocampal area CA1 in vitro,” Neuroscience, 189, 8–22 (2010).

    Article  Google Scholar 

  6. S. Del Ry, M. Cabiati, T. Stefano, et al., “Comparison of NT-proCNP and CNP plasma levels in heart failure, diabetes and cirrhosis patients,” Regul. Pept., 166, 15–20 (2011).

    Article  PubMed  Google Scholar 

  7. E. DiCicco-Bloom, V. Lelievre, X. Zhou, et al., “Embryonic expression and multifunctional actions of the natriuretic peptides and receptors in the developing nervous system,” Dev. Biol., 271, No. 1, 161–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. D. G. Gardner, S. Chen, D. J. Glenn, and C. L. Grigsby, “Molecular biology of the natriuretic peptide system. Implications for physiology and hypertension,” Hypertension, 49, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. M. Kellner, H. Jahn, and K. Wiedemann, “Natriuretic peptides and panic disorder: therapeutic prospects,” Expert Rev. Neurother., 3, No. 3, 381–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Komatsu, K. Nakao, S. Suga, et al., “C-type natriuretic peptide (CNP) in rats and humans,” Endocrinol., 129, No. 2, 1104–1106 (1991).

    Article  CAS  Google Scholar 

  11. T. Maack, “The broad homeostatic role of natriuretic peptides,” Arq. Bras. Endocrinol. Metab., 50, No. 2, 198–207 (2006).

    Article  Google Scholar 

  12. S. F. Mohammed, J. Korinek, H. H. Chen, et al., “Nesiritide in acute decompensated heart failure: current status and future perspectives,” Rev. Cardiovasc. Med., 9, 151–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. T. Nishikimi, K. Kuwahara, and K. Nakao, “Current biochemistry, molecular biology and clinical relevance of natriuretic peptides,” J. Cardiol., 57, 131–140 (2011).

    Article  PubMed  Google Scholar 

  14. 14. T. Ogawa and A. J. de Bold, “The heart as an endocrine organ,” Endocr. Connect., 3, No. 2, R31–R44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. R. Potter, S. Abbey-Hosch, and D. M. Dickey, “Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions,” Endocrine Rev., 22, 47–72 (2006).

    Article  Google Scholar 

  16. J. Prado, M. A. Baltrons, P. Pifarre, and A. Garcia, “Glial cells as a sources and targets of natriuretic peptides,” Neurochem. Int., 57, No. 4, 367–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. H. Schmidt, A. Stonkute, R. Juttner, et al., “The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord,” J. Cell Biol., 179, No. 2, 331–340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. J. Schouten, T. C. R. Prickett, A. A. Hooper, et al., “Central and peripheral forms of C-type natriuretic peptide (CNP): evidence for differential regulation in plasma and cerebrospinal fluid,” Peptides, 32, 797–804 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. D. F. Sellitti, N. Koles, and M. C. Mendoca, “Regulation of C-type natriuretic peptide expression,” Peptides, 32, 1064–1071 (2011).

    Article  Google Scholar 

  20. H. Stepan, E. Leitner, K. Walter, et al., “Gestational regulation of the gene expression of C-type natriuretic peptide in mouse reproductive and embryonic tissue,” Regul. Pept., 102, No. 1, 9–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. G. Stoupakis and M. Klaphoiz, “Natriuretic peptides: biochemistry, physiology and therapeutic role in heart failure,” Heart Dis., 5, No. 3, 215–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. T. Sudoh, K. Kangawa, N. Minamino, and H. Matsuo, “A new natriuretic peptide in porcine brain,” Nature, 332, 78–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. T. G. von Lueder, S. J. Sangaralingham, B. H. Wang, et al., “Reninangiotensin blockage combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure,” Circ. Heart Fail., 6, 594–605 (2012).

    Article  Google Scholar 

  24. T. Walther and H. Stepan, “C-type natriuretic peptide in reproduction, pregnancy and fetal development,” J. Endocrinol., 180, No. 1, 17–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. K. Wiedemann, H. Jahn, and M. Kellner, “Effects of natriuretic peptides upon hypothalamo-pituitary-adrenocortical system activity and anxiety behavior,” Exp. Clin. Endocrinol. Diabetes., 108, No. 1, 5–13 (2000).

    CAS  PubMed  Google Scholar 

  26. Z. Zhao and L. Ma, “Regulation of axonal development by natriuretic peptide hormones,” Proc. Natl. Acad. Sci. USA, 106, No. 42, 18016–18021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Korostyshevskaya.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 5, pp. 515–524, May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korostyshevskaya, I.M., Maksimov, V.F. & Rudenko, N.S. C-Type Natriuretic Peptide: What, Where and Why?. Neurosci Behav Physi 46, 888–894 (2016). https://doi.org/10.1007/s11055-016-0328-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0328-4

Keywords

Navigation