Skip to main content
Log in

The Role of the Sympathoadrenal System in Adaptation to Cold

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Noradrenaline released from sympathetic nerve endings and adrenaline secreted by the adrenal cortex have been shown to play roles in cold adaptation. The calorigenic effect of noradrenaline increases during acclimation. Catecholamines stimulate noncontractile thermogenesis in brown fat tissue, white fat tissue, and skeletal muscle. Adrenergic increases in cold tolerance are associated with increases in UCP expression in the tissues. The following signal pathway operates in mediating the calorigenic effect of catecholamines in prolonged cold exposure: catecholamines → β-adrenergic receptors → adenylate cyclase, cAMP → protein kinase A → p38 kinase → transcription factors → increased UCP expression. The following signal pathway operates on acute exposure to cold: catecholamines → β-adrenergic receptors → adenylate cyclase → cAMP → protein kinase A → hormone-sensitive lipase → free fatty acids → UCP → uncoupling of oxidative phosphorylation. The calorigenic effect of stimulation of α1-adrenoreceptors is mediated by the following mechanism: noradrenaline → α1-adrenergic receptors → phospholipase C → inositol-1,4,5-triphosphate → [Ca2+]i → increased calorigenic effect of catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Burn and D. M. Roberts, “Therapeutic receptors and pharmacodynamics,” in: Basic and Clinical Pharmacology [Russian translation], B. G. Katzung (ed.), Binom Press, Nevskii Dialekt, Moscow, St. Petersburg (1998), pp. 22–52.

  2. V. E. Divert, E. Ya. Tkachenko, and M. A. Yakimenko, “The thermoregulatory effect of blockade of β-adrenoreceptors in cold-adapted rats at rest and at work,” Fiziol. Zh. SSSR, 71, No. 6, 777–781 (1985).

  3. W. S. Klug and M. R. Cummings, Concepts of Genetics [Russian translation], A. A. Lushnikova and S. M. Musatkin (eds.), Tekhnosfera, Moscow (2007).

  4. V. V. Kurbanov, V. P. Khmel’kov, T. N. Krupina, et al., “Clinical biochemical aspects of adaptation of humans to the central Antarctic as applied to the tasks of space biology and medicine,” Kosmich. Biol. Aviakosmich. Med., 11, No. 4, 34–41 (1977).

    CAS  Google Scholar 

  5. L. N. Maslov, Yu. B. Lishmanov, I. G. Khaliulin, et al., “Uncoupling proteins and their role in regulating the resistance of the brain and heart to ischemia and reperfusion,” Ros. Fiziol. Zh., 97, No. 8, 761–780 (2011).

    CAS  Google Scholar 

  6. B. B. Hoffman, “Substances activating adrenoreceptors and other sympathomimetic substances,” in: Basic and Clinical Pharmacology [Russian translation], B. G. Katzung (ed.), Binom Press, Nevskii Dialekt, Moscow, St. Petersburg (1998), pp. 154–174.

  7. C. Atgie, F. D’Allaire, and L. J. Bukowiecki, “Role of β1- and β3-adrenoceptors in the regulation of lipolysis and thermogenesis in rat brown adipocytes,” Am. J. Physiol., 273, No. 4, C1136–C1142 (1997).

    CAS  PubMed  Google Scholar 

  8. N. Begin-Heick, I. Noland, M. Dalpé, and N. M. Heick, “Altered effect of insulin and catecholamines in brown adipose tissue of cold-acclimated rats,” Can. J. Physiol. Pharmacol., 57, No. 3, 320–324 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. E. E. Black, M. A. van Baak, K. P. Kempen, and W. H. Saris, “Role of α- and β-adrenoceptors in sympathetically mediated thermogenesis,” Am. J. Physiol., 264, No. 1, E11–E17 (1993).

    Google Scholar 

  10. S. E. Borst, R. J. Oliver, R. L. Sego, and P. J. Scarpace, “α-Adrenergic receptor-mediated thermogenesis in brown adipose tissue of rat,” Gen. Pharmacol., 25, No. 8, 1703–1710 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. O. Boss, E. Bachman, A. Vidal-Puig, et al., “Role of the β3-adrenergic receptor and/or a putative β4-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-γ coactivator-1,” Biochem. Biophys. Res. Commun., 261, No. 3, 870–876 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. G. M. Budd, J. R. Brotherhood, D. W. Thomas, et al., “Cardiovascular and metabolic responses to noradrenaline in men acclimatized to cold baths,” Eur. J. Appl. Physiol. Occup. Physiol., 67, No. 5, 450–456 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. W. Cao, K. W. Daniel, J. Robidoux, et al., “p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene,” Mol. Cell. Biol., 24, No. 7, 3057–3067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Cinti, R. Cancello, M. C. Zingaretti, et al., “CL316,243 and cold stress induce heterogeneous expression of UCP1 mRNA and protein in rodent brown adipocytes,” J. Histochem. Cytochem., 50, No. 1, 21–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. S. A. Cunningham and D. G. Nicholls, “Induction of functional uncoupling protein in guinea pigs infused with noradrenaline. Studies with isolated brown adipocytes,” Biochem. J., 245, No. 2, 485–491 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F. Depocas, W. A. Behrens, and D. O. Foster, “Noradrenaline-induced calorigenesis in warm- and in cold-acclimated rats: the interrelation of dose of noradrenaline, its concentration in arterial plasma, and calorigenic response,” Can. J. Physiol. Pharmacol., 56, No. 2, 168–0174 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. F. Depocas, G. Zaror-Behrens, and S. Lacelle, “Noradrenalineinduced calorigenesis in warm- or cold-acclimated rats. In vivo estimation of adrenoceptor concentration of noradrenaline effecting half-maximal response,” Can. J. Physiol. Pharmacol., 58, No. 9, 1072–1077 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. M. Desautels, R. A. Dulos, and B. Mozaffari, “Selective loss of uncoupling protein from mitochondria of surgically denervated brown adipose tissue of cold-acclimated mice,” Biochem. Cell. Biol., 64, No. 11, 1125–1134 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. A. Dicker, B. Cannon, and J. Nedergaard, “Cold acclimation-recruited nonshivering thermogenesis: the Syrian hamster is not an exception,” Am. J. Physiol., 269, No. 4, R767–R774 (1995).

    CAS  PubMed  Google Scholar 

  20. E. Evonuk and J. P. Hannon, “Cardiovascular function and norepinephrine thermogenesis in cold-acclimated rats,” Am. J. Physiol., 204, No. 5, 888–894 (1963).

    CAS  Google Scholar 

  21. D. O. Foster, F. Depocas, and M. L. Frydman, “Noradrenalineinduced calorigenesis in warm-and cold-acclimated rats: relations between concentration of noradrenaline in arterial plasma, blood flow to differently located masses of brown adipose tissue, and calorigenic response,” Can. J. Physiol. Pharmacol., 58, No. 8, 915–924 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. M. J. Fregly, F. P. Field, E. L. Nelson, et al., “Effect of chronic exposure to cold on some responses to catecholamines,” J. Appl. Physiol., 42, No. 3, 349–354 (1977).

    CAS  PubMed  Google Scholar 

  23. M. J. Fregly, F. Rossi, P. Van Vergen, et al., “Effect of chronic treatment with losartan potassium (DuP 753) on the elevation of blood pressure during chronic exposure of rats to cold,” Pharmacology, 46, No. 4, 198–205 (1993).

  24. K. Fukuhara, R. Kvetnansky, V. K. Weise, et al., “Effects of continuous and intermittent cold (SART) stress on sympathoadrenal system activity in rats,” J. Neuroendocrinol., 8, No. 1, 65–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. A. Gilgen, R. P. Maickel, O. Nikodijevic, and B. B. Brodie, “Essential role of catecholamines in the mobilization of free fatty acids and glucose after exposure to cold,” Life Sci., 1, No. 12, 709–715 (1962).

    Article  CAS  PubMed  Google Scholar 

  26. J. Gómez-Ambrosi, G. Frühbeck, and J. A. Martínez, “Leptin, but not a β3-adrenergic agonist, upregulates muscle uncoupling protein-3 messenger RNA expression: short-term thermogenic interactions,” Cell. Mol. Life Sci., 55, No. 6–7, 992–997 (1999).

    PubMed  Google Scholar 

  27. J. Gómez-Ambrosi, G. Frühbeck, M. Aguado, et al., “Divergent effects of an alpha2-adrenergic antagonist on lipolysis and thermogenesis: interactions with a beta3-adrenergic agonist in rats,” Int. J. Mol. Med., 8, No. 1, 103–109 (2001).

    PubMed  Google Scholar 

  28. D. W. Gong, Y. He, M. Karas, and M. Reitmen, “Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin,” J. Biol. Chem., 272, No. 39, 24,129–24,132 (1997).

    Article  CAS  Google Scholar 

  29. G. Granneman and M. J. Bannon, “Neural control of the α-subunit of Gs messenger ribonucleic acid in rat brown adipose tissue,” Endocrinology, 125, No. 5, 2328–2334 (1989).

  30. J. P. Hannon and A. M. Larson, “Fatty acid metabolism during norepinephrine-induced thermogenesis in the cold-acclimatized rat,” Am. J. Physiol., 203, No. 6, 1055–1061 (1962).

    CAS  PubMed  Google Scholar 

  31. K. Harinath, A. S. Malhotra, K. Pal, et al., “Autonomic nervous system and adrenal response to cold in man at Antarctica,” Wilderness Environ. Med., 16, No. 2, 81–91 (2005).

    Article  PubMed  Google Scholar 

  32. J. Himms-Hagen, “Brown adipose tissue thermogenesis: interdisciplinary studies,” FASEB J., 4, No. 11, 2890–2898 (1990).

    CAS  PubMed  Google Scholar 

  33. P. Huttunen, H. Rintamäki, and J. Hirvonen, “Effect of regular winter swimming on the activity of the sympathoadrenal system before and after a single cold water immersion,” Int. J. Circumpolar Health, 60, No. 3, 400–406 (2001).

    CAS  PubMed  Google Scholar 

  34. L. Jansky, S. Vybíral, M. Trubacová, and J. Okrouhlik, “Modulation of adrenergic receptors and adrenergic functions in cold adapted humans,” Eur. J. Appl. Physiol., 104, No. 2, 131–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. M. Jimenez, B. Léger, K. Canola, et al., “β123-Adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting,” FEBS Lett., 530, No. 1–3, 37–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. R. J. Joy, “Responses of cold acclimatized men to infused norepinephrine,” J. Appl. Physiol., 18, No. 6, 1209–1212 (1963).

    CAS  PubMed  Google Scholar 

  37. R. Kawate, M. I. Talan, and B. T. Engel, “Sympathetic nervous activity to brown adipose tissue increases in cold-tolerant mice,” Physiol. Behav., 55, No. 5, 921–925 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. M. Kiang-Ulrich and S. M. Horvath, “Metabolic responses to tyramine and cold in young male Sprague–Dawley and Fischer 344 rats,” Am. J. Physiol., 246, No. 2, Part 1, E141–E144 (1984).

  39. K. Kikuchi-Utsumi, M. Kikuchi-Utsumi, B. Cannon, and J. Nede rgaard, “Differential regulation of the expression of α1-adrenergic receptor subtype genes in brown adipose tissue,” Biochem. J., 322, No. 2, 417–424 (1997).

  40. M. L. Kortelainen, P. Huttunen, and T. Lapinlampi, “Influence of two β-adrenoceptor antagonists, propranolol and pindolol, on cold adaptation in the rat,” Br. J. Pharmacol., 99, No. 4, 673–678 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Kurahashi and A. Kuroshima, “Changes in adipocyte β-adrenergic receptor of cold-acclimated rats,” Jpn. J. Physiol., 29, No. 1, 15–23 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. A. Kuroshima, M. Kurahashi, and T. Yahata, “Calorigenic effects of noradrenaline and glucagon on white adipocytes in cold- and heat-acclimated rats,” Pflügers Arch., 381, No. 2, 113–117 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. A. Kuroshima and T. Yahata, “Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat-acclimated and cold-acclimated rats,” Jpn. J. Physiol., 29, No. 6, 683–690 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. A. Kuroshima, T. Yahata, and T. Ohno, “Effect of noradrenaline on plasma hormones and metabolites in cold-acclimated rats,” Jpn. J. Physiol., 38, No. 2, 199–207 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. J. LeBlanc and M. Pouliot, “Importance of noradrenaline in cold adaptation,” Am. J. Physiol., 207, No. 4, 853–856 (1964).

    CAS  PubMed  Google Scholar 

  46. J. LeBlanc, J. Vallières, and C. Vachon, “Beta-receptor sensitization by repeated injections of isoproterenol and by cold adaptation,” Am. J. Physiol., 222, No. 4, 1043–1046 (1972).

    CAS  PubMed  Google Scholar 

  47. J. LeBlanc, A. Labrie, D. Lupien, and D. Richard, “Catecholamines and triiodothyronine variations and the calorigenic response to norepinephrine in cold-adapted and exercise-trained rats,” Can. J. Physiol. Pharmacol., 60, No. 6, 783–787 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. J. Leduc and P. Rivest, “Effects of ablation of interscapular brown fat on cold acclimation in rats,” Rev. Can. Biol., 28, No. 1, 49–66 (1969).

    CAS  PubMed  Google Scholar 

  49. Y. L. Liu, S. Toubro, A. Astrup, and M. J. Stock, “Contribution of beta 3-adrenoceptor activation to ephedrine-induced thermogenesis in humans,” Int. J. Obes. Metab. Disord., 19, No. 9, 678–685 (1995).

    CAS  Google Scholar 

  50. C. L. Mattsson, R. L. Csikasz, E. Chernogubova, et al., “β1-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β3-adrenergic receptor-knockout mice via nonshivering thermogenesis,” Am. J. Physiol. Endocrinol. Metab., 301, No. 6, E1108–E1118 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. K. Moriya, H. Maekubo, and T. Hiroshige, “Effects of norepinephrine on uptake and oxidation of plasma free fatty acids in cold-acclimated rats,” Jpn. J. Physiol., 27, No. 5, 601–617 (1977).

    Article  CAS  PubMed  Google Scholar 

  52. J. D. Mulligan, A. A. Gonzalez, A. M. Stewart, et al., “Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse,” J. Physiol., 580, No. 2, 677–684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. I. Nagase, N. Sasaki, K. Tsukazaki, et al., “Hyperplasia of brown adipose tissue after chronic stimulation of β3-adrenergic receptor in rats,” Jpn. J. Vet. Res., 42, No. 3–4, 137–145 (1994).

    CAS  PubMed  Google Scholar 

  54. I. Nagase, Y. Yoshida, K. Kumamoto, et al., “Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic β3-adrenergic agonist,” J. Clin. Invest., 97, No. 12, 2898–2904 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Y. Nakamura, I. Nagase, A. Asano, et al., “β3-Adrenergic agonist up-regulates uncoupling proteins 2 and 3 in skeletal muscle of the mouse,” J. Vet. Med. Sci., 63, No. 3, 309–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. J. Nedergaard, “Catecholamine sensitivity in brown fat cells from cold-acclimated hamsters and rats,” Am. J. Physiol., 242, No. 3, C250–C257 (1982).

    CAS  PubMed  Google Scholar 

  57. P. Puigserver, D. Herron, M. Gianotti, et al., “Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool,” Biochem. J., 284, No. 2, 393–398, (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Raasmaja, N. Mohell, and J. Nedergaard, “Increased β1-adrenergic receptor density in brown adipose tissue of cold-acclimated rats and hamsters,” Eur. J. Pharmacol., 1–6, No. 3, 489–498 (1984).

    Article  Google Scholar 

  59. A. D. Rimmer, E. Schonbaum, and E. A. Sellers, “Effects of norepinephrine on blood glucose and free fatty acids in cold-adapted rats,” Am. J. Physiol., 203, No. 1, 95–97 (1962).

    CAS  PubMed  Google Scholar 

  60. L. Rochon and L. J. Bukowiecki, “Alterations in adipocyte response to lipolytic hormones during cold acclimation,” Am. J. Physiol., 258, No. 5, C835–C840 (1990).

    CAS  PubMed  Google Scholar 

  61. E. M. Rohlfs, K. W. Daniel, R. T. Premont, et al., “Regulation of the uncoupling protein gene (UCP) by β1, β2, and β3-adrenergic receptor subtypes in immortalized brown adipose cell lines,” J. Biol. Chem., 270, No. 18, 10,723–10,732 (1995).

    Article  CAS  Google Scholar 

  62. N. J. Rothwell and M. J. Stock, “Effects of denervating brown adipose tissue on the responses to cold, hyperphagia and noradrenaline treatment in the rat,” J. Physiol., 355, 457–463 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. N. J. Rothwell, M. J. Stock, and D. K. Sudera, “Thermogenic responsesto adrenoceptor agonists and brown fat adrenoceptors in overfed rats,” Eur. J. Pharmacol., 125, No. 3, 313–323 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. P. J. Scarpace and M. Matheny, “Thermogenesis in brown adipose tissue with age: post-receptor activation by forskolin,” Pflügers Arch., 431, No. 3, 388–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. H. Sell, Y. Deshaies, and D. Richard, “The brown adipocyte: update on its metabolic role,” Int. J. Biochem. Cell. Biol., 36, No. 11, 2098–2104 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. R. J. Sharara-Chami, M. Joachim, M. Mulcahey, et al., “Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue,” Mol. Cell. Endocrinol., 328, No. 2–4, 34–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. M. Shiota and S. Masumi, “Effect of norepinephrine on consumption of oxygen in perfused skeletal muscle from cold-exposed rats,” Am. J. physiol., 254, No. 4, E482–E489 (1988).

    CAS  PubMed  Google Scholar 

  68. L. C. Smith and L. P. Dugal, “Excretion of catecholamines by white rats in the cold,” Can. J. Physiol. Pharmacol., 42, No. 4, 567–577 (1964).

    Article  CAS  PubMed  Google Scholar 

  69. R. E. Smith and D. J. Hoijer, “Metabolism and cellular function in cold acclimation,” Physiol. Rev., 42, No. 1, 60–142 (1962).

    CAS  PubMed  Google Scholar 

  70. R. E. Smith and J. C. Roberts, “Thermogenesis of brown adipose tissue in cold-acclimated rats,” Am. J. Physiol., 206, No. 1, 143–148 (1964).

    CAS  PubMed  Google Scholar 

  71. J. Svartengren, P. Svoboda, and B. Cannon, “Desensitisation of β-adrenergic responsiveness in vivo. Decreased coupling between receptors and adenylate cyclase in isolated brown-fat cells,” Eur. J. Biochem., 128, No. 2–3, 481–488 (1982).

    CAS  PubMed  Google Scholar 

  72. R. F. Thomas, B. D. Holt, D. A. Schwinn, and S. B. Liggett, “Longterm agonist exposure induces upregulation of β3-adrenergic receptor expression via multiple cAMP response elements,” Proc. Natl. Acad. Sci. USA, 89, No. 10, 4490–4494 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. C. B. Ueta, G. W. Fernandes, L. P. Capelo, et al., “β1-Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice,” J. Endocrinol., 214, No. 3, 359–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. L. Unelius, G. Bronnikov, N. Mohell, and J. Nedergaard, “Physiological desensitization of β3-adrenergic responses in brown fat cells: involvement of a postreceptor process,” Am. J. Physiol., 265, No. 5, C1340–C1348 (1993).

    CAS  PubMed  Google Scholar 

  75. C. van Hardeveld, M. Zuidwijk, and A. Kassenaar, “Involvement of adrenergic receptors in skeletal muscle metabolism of the cold-adapted rat,” Horm. Metab. Res., 12, No. 6, 264–269 (1980).

    Article  PubMed  Google Scholar 

  76. S. L. Wijers, P. Schrauwen, M. A. van Baak, et al., “β-Adrenergic receptor blockade does not inhibit cold-induced thermogenesis in humans: possible involvement of brown adipose tissue,” J. Clin. Endocrinol. Metab., 96, No. 4, E598–E605 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. J. Zaagsma and S. R. Nahorski, “Is the adipocyte beta-adrenoceptor a prototype for the recently cloned atypical ‘beta 3-adrenoceptor’?” Trends Pharmacol. Sci., 11, No. 1, 3–7 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. J. Zhao, B. Cannon, and J. Nedergaard, “αl-Adrenergic stimulation potentiates the thermogenic action of β3-adrenoreceptor-generated cAMP in brown fat cells,” J. Biol. Chem., 272, No. 52, 32847–32856 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. J. Zhao, B. Cannon, and J. Nedergaard, “Thermogenesis is β3- but not β1-adrenergically mediated in rat brown fat cells, even after cold acclimation,” Am. J. Physiol., 275, No. 6, R2002–R2011 (1998).

    CAS  PubMed  Google Scholar 

  80. K. D. Zylan and H. J. Carlisle, “Effect of ambient temperature on the paradoxical metabolic responses to norepinephrine,” Pharmacol. Biochem. Behav., 43, No. 2, 577–582 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maslov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 2, pp. 145–162, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, L.N., Vychuzhanova, E.A. The Role of the Sympathoadrenal System in Adaptation to Cold. Neurosci Behav Physi 46, 589–600 (2016). https://doi.org/10.1007/s11055-016-0283-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0283-0

Keywords

Navigation