Skip to main content
Log in

Blockade of Histone Deacetylation in the Brain Modulates the Expression of Transcription Factors c-FOS and ZENK and Potentiates the Formation of Long-Term Memory in Neonatal Chicks

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to study the role of histone acetylation in brain cells in the formation of memory in neonatal chicks by investigating the effects of intracerebral administration of the histone deacetylase inhibitor trichostatin A on the formation of memory in “weak” learning by chicks of a passive avoidance task and on the expression of transcription factors c-Fos and ZENK. Administration of trichostatin A before training led to a significant dose-dependent increase in memory on testing at 24 h. In addition, trichostatin A induced c-Fos and ZENK expression in a number of brain structures: the intermediate medial mesopallium and the hippocampus showed increases in the density of cells expressing ZENK and the intermediate arcopallium and dorsocaudal nidopallium showed increases in cells expressing c-Fos. Subsequent learning did not produce additional expression of these genes in any of these structures. These results demonstrate the possibility of increasing “weak” memory in chicks using a histone deacetylase inhibitor, supporting the hypothesis that histone acetylation has a role in the consolidation of long-term memory. This effect may be linked with activation of the expression of transcription factor genes in brain structures involved in memory consolidation in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew, R. J., “The nature of behavioural lateralisation in the chick,” in: Neural and Behavioural Plasticity: The Use of the Domestic Chick as a Model, R. J. Andrew (ed.), Oxford Univ. Press, Oxford (1991), pp. 536–554.

    Chapter  Google Scholar 

  2. Anokhin, K. V., “Molecular scenarios for the consolidation of long-term memory,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 261–279 (1997).

    CAS  Google Scholar 

  3. Bailey, D. J. and Wade, J., “Differential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch,” Brain Res. Mol. Brain Res., 116, No. 1–2, 147–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Crowe, S. F., Ng, K. T., and Gibbs, M. E., “Memory formation processes in weakly reinforced learning,” Pharmacol. Biochem. Behav., 33, 881–887 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Federman, N., Fustinana, M. S., and Romano, A., “Histone acetylation is recruited in consolidation as a molecular feature of stronger memories,” Learn. Mem., 16, 600–606 (2009).

    Article  PubMed  Google Scholar 

  6. Gutowski, J. F., Setlow, B., Wagner, E. K., and McGaugh, J. L., “Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-Fos, and zif268,” J. Neurosci., 21: 5089–5098 (2001).

    Google Scholar 

  7. Hall, J., Thomas, K. L., and Everitt, B. J., “Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories,” J. Neurosci., 21: 2186–2193 (2001).

    CAS  PubMed  Google Scholar 

  8. Herdegen, T., Leah, J. D., “Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins,” Brain Res. Rev., 28, 370–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hughes, P. E., Alexi, T., Walton, M., et al., “Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system,” Prog. Neurobiol., 57, 421–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Kuenzel, W. J. and Masson, M. A., A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus), The John Hopkins Univ. Press, Baltimore and London (1984).

    Google Scholar 

  11. Kwon, B. and Houpt, T. A., “Phospho-acetylation of histone H3 in the amygdala after acute lithium chloride,” Brain Res., 1333, 36–47 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lattafff, K. M., Barrett, R. M., and Wood, M. A., “Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction,” Behav. Neurosci. 2007. 121, 1125–1131.

    Article  Google Scholar 

  13. Levenson, J. M. and Sweatt, J. D., “Epigenetic mechanisms in memory formation,” Nat. Rev. Neurosci., 6, 108–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Levenson, J. M., O’Riordan, K. J., Brown, K. D., et al., “Regulation of histone acetylation during memory formation in the hippocampus,” J. Biol. Chem., 279, 40,545–40,559 (2004).

    Google Scholar 

  15. Metzger, M., Jiang, S., and Braun, K., “Organisation of the dorsocaudal neostriatum complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting,” J. Comp. Neurol., 395, 380–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Moorman, S., Mello, C. V., and Bolhuis, J. J., “From songs to synapses – molecular mechanisms of birdsong memory,” Bioessays, 33, No. 5, 377–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Peixoto, L. and Abel, T., “The role of histone acetylation in memory formation and cognitive impairments,” Neuropsychopharmacology, 38, No. 1, 62–76 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sandi, C., Rose, S. P., and Patterson, T. A., “Unilateral hippocampal lesions prevent recall of a passive avoidance task in day-old chicks,” Neurosci. Lett., 141, 255–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Sassone-Corsi, P., Lamph, W. W., Kamps, M., and Verma, L M., “Fosassociated cellular p39 is related to nuclear transcription factor AP-1,” Cell, 54, 553–560 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Soares, J. G. M., Pereira, A. C. C. N., Botelho, E. P., et al., “Differential expression of zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normal Cebus monkeys and after monocular lesions,” J. Comp. Neurol., 482, 166–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Stefanko, D. P., Barrett, R. M., Ly, A. R., et al., “Modulation of long-term memory for object recognition via HDAC inhibition,” Proc. Natl. Acad. Sci. USA, 106, 9447–9452 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Suge, R., Kato, H., and McCabe, B. J., “Rapid induction of the immediate early gene c-Fos in a chick forebrain system involved in memory,” Exp. Brain Res., 200, No. 2, 183–188 (2010).

    Article  PubMed  Google Scholar 

  23. Tiunova, A. A., Toporova, K. A., Konovalova, E. V., and Anokhin, K. V., “Effects of systemic administration of histone deacetylase inhibitors on memory formation and the expression of the early genes in the chick brain,” Byull. Eksperim. Biol. Med., 153, No. 5, 703–707 (2012).

    Google Scholar 

  24. Tokarev, K., Tiunova, A., Scharff, C., and Anokhin, K., “Food for song, expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning,” PLoS One, 6, No. 6, e21157 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tsankova, N. M., Kumar, A., and Nestler, E. J., “Histone modifi cations at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures,” J. Neurosci., 24, 5603–5610 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Vecsey, C. C., Hawk, J. D., Lattall, K. M., et al., “Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBPdependent transcriptional activation,” J. Neurosci., 27, 6128–6140 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhou, Y., Won, J., Karlsson, M. G., et al., “CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala,” Nat. Neurosci., 12, 1438–1443 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tiunova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 5, pp. 551–561, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toporova, K.A., Anokhin, K.V. & Tiunova, A.A. Blockade of Histone Deacetylation in the Brain Modulates the Expression of Transcription Factors c-FOS and ZENK and Potentiates the Formation of Long-Term Memory in Neonatal Chicks. Neurosci Behav Physi 46, 256–263 (2016). https://doi.org/10.1007/s11055-016-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0226-9

Keywords

Navigation