Skip to main content

Advertisement

Log in

Effects of Administration of an Agonist and an Antagonist of GABAA Receptors into the Basolateral Nucleus of the Amygdala on the Expression and Extinction of Fear in Rats with Different Freezing Durations

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Rats were divided into groups expressing small and large amounts of freezing on the basis of differences in freezing duration after acquisition of conditioned reflex fear. The effects of local bilateral administration into the basolateral nucleus of the amygdala of a GABAA receptor agonist (muscimol, 0.1 μg/0.5 μl), antagonist (bicuculline, 0.07 μg/0.5 μl), and physiological saline (0.5 μl, controls) on the expression and extinction of conditioned reflex fear in these two groups of rats were studied. Administration of muscimol before testing for conditioned reflex fear led to a decrease in freezing duration, with a greater effect on the expression of fear in rats with a low freezing level. Administration of bicuculline increased aggressivity in the rats, decreased freezing duration, and led to the expression of elements of panic behavior, with greater effects in animals with high levels of freezing. Administration of both muscimol and bicuculline into the amygdala before extinction sessions led to acceleration of the extinction of fear in rats with high levels of freezing but had no effect in animals with a low level of freezing. These result provide evidence that the GABAA receptor agonist and antagonist have different effects in animals with different levels of fear, suggesting differences in the receptor apparatus in relation to GABAergic transmission in the amygdala.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akirav, I, Raizel, H., and Maroun, M., “Enhancement of conditioned fear extinction by infusion of the GABA(A) agonist muscimol into the rat prefrontal cortex and amygdale,” Eur. J. Neurosci., 23, No. 3, 758–764 (2006).

    Article  PubMed  Google Scholar 

  • Berlau, D. J. and McGaugh, J. L., “Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdale,” Neurobiol. Learn. Mem., 86, No. 2, 123–132 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Blair, H. T., Schafe, G. E., Bauer, E. P., et al., “Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning,” Learn. Mem., 8, No. 5, 229–242 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bryant, R. A., Creamer, M., O’Donnell, M., et al., “A multisite study of initial respiration rate and heart rate as predictors of posttraumatic stress disorder,” J. Clin. Psychiatry, 69, No. 11, 1694–1701 (2008).

    Article  PubMed  Google Scholar 

  • Camp, M. C., Macpherson, K. P., Lederle, L, et al., “Genetic strain differences in learned fear inhibition associated with variation in neuroendocrine, autonomic, and amygdale dendritic phenotypes,” Neuropsychopharmacology, 37, No. 6, 1534–1547 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubrovina, N. I. and Tomilenko, R. A., “Characteristics of extinction of a conditioned passive avoidance reaction in mice with different levels of anxiety,” Ros. Fiziol. Zh., 91, No. 9, 1013–1020 (2005).

    CAS  Google Scholar 

  • Gaburro, S. Stiedl, O., Giusti, P., et al., “A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment,” Int. J. Neuropsychopharmacol., 14, No. 10, 1341–1355 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graeff, F. G. and Del-Ben, C. M., “Neurobiology of panic disorder: from animal models to brain neuroimaging,” Neurosci. Biobehav. Rev., 32, No. 7, 1326–1335 (2008).

    Article  PubMed  Google Scholar 

  • Grigor’an, G. A., “Aggressive behavior in animal models,” Zh. Vyssh. Nerv. Deyat., 62, No. 5, 517–530 (2012).

    Google Scholar 

  • Heldt, S. A. and Ressler, K. J., “Training-induced changes in the expression of GABAA-associated genes in the amygdale after the acquisition and extinction of Pavlovian fear,” Eur. J. Neurosci., 26, No. 12, 3631–3644 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kash, S. F., Tecott, L. H., Hodge, C., and Baekkeskov, S., “Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase,” Proc. Natl. Acad. Sci. USA, 96, 1698–1703 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim, J. E., Dager, S. R., and Lyoo, I. K., “The role of the amygdale in the pathophysiology of panic disorder: evidence from neuroimaging studies,” Biol. Mood Anx. Disord., 2, No. 1, 20–37 (2012).

    Article  Google Scholar 

  • Laurent. V. and Westbrook, R. F., “Distinct contributions of the basolateral amygdale and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear,” Learn. Mem., 15, No. 9, 657–666 (2008).

  • LeDoux, J. E., “The amygdale,” Curr. Biol., 17, No. 20, 868–874 (2007).

    Article  Google Scholar 

  • Lehner, M., Wislowska-Stanek, A., Taracha, E., et al., “The effects of midazolam and D-cycloserine on the release of glutamate and GABA in the basolateral amygdale of low and high anxiety rats during extinction trial of a conditioned fear test,” Neurobiol. Learn. Mem., 94, No. 4, 468–480 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam, H. A., Roohbakhsh, A., Rostami, P., et al., “GABA and histamine interaction in the basolateral amygdala of rats in the plus-maze test of anxiety-like behaviors,” Pharmacology, 82, No. 1, 59–66 (2008).

    Article  Google Scholar 

  • Muigg, P., Hetzenauer, A., Hauer, G., et al., “Impaired extinction of learned fear in rats selectively bred for high anxiety – evidence of altered neuronal processing in prefrontal-amygdala pathways,” Eur. J. Neurosci., 28, 2299–2309 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pape, H. C., “GABAergic neurons: gate masters of the amygdale, mastered by dopamine,” Neuron, 48, No. 6, 1025–1037 (2005).

    Article  Google Scholar 

  • Pavlova, I. V. and Rysakova, M. P., “Effects of administration of a GABAA receptor agonist and antagonist into the amygdala in rabbits on the respiratory and cardiac components of conditioned reflex fear,” Zh. Vyssh. Nerv. Deyat., 63, No. 6, 730–743 (2013).

    CAS  Google Scholar 

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Academic Press (1998).

    Google Scholar 

  • Royer, S. and Pare, D., “Bidirectional synaptic plasticity in intercalated amygdale neurons and the extinction of conditioned fear responses,” Neuroscience, 115, No. 2, 455–462 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Rysakova, M. P. and Pavlova, I. V., “Effects of administration of a GABAA receptor agonist and antagonist into the amygdala on behavior active and passive rabbits in emotionally negative situations,” Zh. Vyssh. Nerv. Deyat., 72, No. 3, 332–345 (2012).

    Google Scholar 

  • Shekhar, A., Sajdyk, T. S., Keim, S. R., et al., “Role of the basolateral amygdale in panic disorder,” Ann. NY Acad. Sci., 877, No. 1, 747–750 (2006).

    Google Scholar 

  • Shuhama, R., Del-Ben, C. M., Loureiro, S. R., and Graeff, F. G., “Animal defense strategies and anxiety disorders,” Ann. Acad. Bras. Scienc., 79, No. 1, 97–109 (2007).

    Article  Google Scholar 

  • Sienkewicz-Jarosz, H., Szyndler, J., Czlonkowska, A. I., et al., “Rat behavior in two models on anxiety and brain [3H]muscimol binding: pharmacological, correlation, and multifactor analysis,” Behav. Brain Res., 145, No. 102, 17–22 (2003).

    Article  Google Scholar 

  • Sierra-Mercado, D., Padilla-Coreiano, N., and Quirk, G. J., “Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdale in the expression and extinction of conditioned fear,” Neuropsychopharmacology, 36, No. 2, 529–538 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasan, R. O., Bukovac, A., Peterschmitt, Y. N., et al., “Altered GABA transmission in a mouse model of increased trait anxiety,” Neuroscience, 183, No. 1, 71–80 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Nobelen, M. and Kokkinidis, L., “Amygdaloid GABA, not glutamate neurotransmission or mRNA transcription controls footshock-associated fear arousal in the acoustic startle paradigm,” Neuroscience, 137, No. 2, 707–716 (2006).

    Article  PubMed  Google Scholar 

  • Voronina, T. A. and Seredenin, D. B., “Potentials for the search for new anxiolytics,” Eksperim. Klin. Farmakol., 65, No. 5, 4–17 (2002).

    CAS  Google Scholar 

  • Walker, F. R., Hinwood, M., Masters, L., et al., “Individual differences predict susceptibility to conditioned fear arising from psychosocial trauma,” J. Psychiatr. Res., 42, No. 5, 371–383 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pavlova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 4, pp. 460–473, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, I.V., Rysakova, M.P. Effects of Administration of an Agonist and an Antagonist of GABAA Receptors into the Basolateral Nucleus of the Amygdala on the Expression and Extinction of Fear in Rats with Different Freezing Durations. Neurosci Behav Physi 46, 205–214 (2016). https://doi.org/10.1007/s11055-015-0219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0219-0

Keywords

Navigation